
DePauw University DePauw University 

Scholarly and Creative Work from DePauw University Scholarly and Creative Work from DePauw University 

Biology Faculty publications Biology 

1-15-2020 

MicroRNA-298 reduces levels of human amyloid-β precursor MicroRNA-298 reduces levels of human amyloid-  precursor 

protein (APP), β-site APP-converting enzyme 1 (BACE1) and protein (APP), -site APP-converting enzyme 1 (BACE1) and 

specific tau protein moieties specific tau protein moieties 

Nipun Chopra 
DePauw University, nipunchopra@depauw.edu 

Ruizhi Wang 

et al. 

Follow this and additional works at: https://scholarship.depauw.edu/bio_facpubs 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Chopra, N., Wang, R., Maloney, B. et al. MicroRNA-298 reduces levels of human amyloid-β precursor 
protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry 
26, 5636–5657 (2021). https://doi.org/10.1038/s41380-019-0610-2 

This Article is brought to you for free and open access by the Biology at Scholarly and Creative Work from DePauw 
University. It has been accepted for inclusion in Biology Faculty publications by an authorized administrator of 
Scholarly and Creative Work from DePauw University. 

https://scholarship.depauw.edu/
https://scholarship.depauw.edu/bio_facpubs
https://scholarship.depauw.edu/biology
https://scholarship.depauw.edu/bio_facpubs?utm_source=scholarship.depauw.edu%2Fbio_facpubs%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=scholarship.depauw.edu%2Fbio_facpubs%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages


Molecular Psychiatry (2021) 26:5636–5657
https://doi.org/10.1038/s41380-019-0610-2

ARTICLE

MicroRNA-298 reduces levels of human amyloid-β precursor protein
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Abstract
Alzheimer’s disease (AD) is the most common age-related form of dementia, associated with deposition of intracellular
neuronal tangles consisting primarily of hyperphosphorylated microtubule-associated protein tau (p-tau) and extracellular
plaques primarily comprising amyloid- β (Aβ) peptide. The p-tau tangle unit is a posttranslational modification of normal tau
protein. Aβ is a neurotoxic peptide excised from the amyloid-β precursor protein (APP) by β-site APP-cleaving enzyme 1
(BACE1) and the γ-secretase complex. MicroRNAs (miRNAs) are short, single-stranded RNAs that modulate protein
expression as part of the RNA-induced silencing complex (RISC). We identified miR-298 as a repressor of APP, BACE1,
and the two primary forms of Aβ (Aβ40 and Aβ42) in a primary human cell culture model. Further, we discovered a novel
effect of miR-298 on posttranslational levels of two specific tau moieties. Notably, miR-298 significantly reduced levels of
~55 and 50 kDa forms of the tau protein without significant alterations of total tau or other forms. In vivo overexpression of
human miR-298 resulted in nonsignificant reduction of APP, BACE1, and tau in mice. Moreover, we identified two miR-
298 SNPs associated with higher cerebrospinal fluid (CSF) p-tau and lower CSF Aβ42 levels in a cohort of human AD
patients. Finally, levels of miR-298 varied in postmortem human temporal lobe between AD patients and age-matched non-
AD controls. Our results suggest that miR-298 may be a suitable target for AD therapy.

Introduction

Alzheimer’s disease (AD) is a complex neurodegenera-
tive disorder with a phenotypic spectrum that includes
memory loss as well as decline in other cognitive domains
(e.g., executive function, language, perceptual-motor),

functional decline and especially in later stages neu-
ropsychiatric symptoms (e.g., irritability, depression,
agitation, and hallucinations) [1]. Given that the strongest
risk factor is age and the population of aging adults is
increasing, the incidence of this disorder is expected to
likewise rise dramatically. In 2019, an estimated 44 mil-
lion cases of AD have been reported worldwide [2], with
5.8 million cases are estimated for within the USA, alone.
It is estimated there will be one half to one million new
cases within 2019, although at least half of those who
already have AD will likely die due to the disorder within
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the same year, depending on estimation methods [3]. The
neuropathology of AD is characterized by deposition of
senile plaque and neurofibrillary tangles [4]. Senile pla-
ques are generated by oligomerization of soluble β-
amyloid (Aβ) peptide, which is generated by the
sequential cleavage of amyloid- β precursor protein
(APP) by β-site APP-cleaving enzyme 1 (BACE1) and the
γ-secretase complex [5]. The most common forms of Aβ
are 40 and 42 amino acid peptides, Aβ40 and Aβ42. Thus,
reduction of soluble Aβ by targeting APP and BACE1 is a
therapeutic goal, in accordance with the amyloid
hypothesis [6]. However, both APP and BACE1 play an
important role in normal physiological function of neu-
ronal and glial cells [7–9]. APP acts in pancreatic islets
[10], and BACE1 plays a role in normal liver metabolism
[11–13]; therefore, a complete knockdown of either pro-
tein is undesirable. Moreover, attempts at inhibiting
BACE1 or buffering Aβ directly have had limited success
[11, 14] though work continues to identify selective
inhibitors of upstream modulators of BACE1 expression.
Therefore, a novel mechanism to reduce Aβ levels by
modulating APP and/or BACE1 is warranted. An addi-
tional hallmark of AD is accumulation of hyperpho-
sphorylated microtubule-associated protein tau [15]
(gene: MAPT), (p-tau) in intraneuronal tangles. Any
endogenous target that could potentially regulate both
would be a valuable route of study for effective treatment.

Modulation of protein expression can be achieved by
microRNAs (miRNAs), which often target the 3ʹ untrans-
lated regions (UTR) of specific mRNAs and modify their
expression post transcriptionally [16]. Specific miRNAs are
differentially expressed in brain tissue from AD vs non-AD
individuals [17–22]. Further, miRNAs also exist in biofluids
such as urine, cerebrospinal fluid (CSF), blood and blood
derivatives such as serum and plasma [19, 23, 24] from AD
patients, thereby confirming a possible role as biomarkers
for AD diagnosis.

miRNAs that modulate APP, BACE1, and tau have been
identified, and the APP and BACE1-regulating miRNAs
likewise reduce levels of soluble Aβ40. APP is regulated by
miR-16 [25–27], miR-101 [28, 29], miR-153 [30, 31], miR-
193b [32], and miR-200b [33]. Similarly, miR-9 [21], miR-
15b [34, 35], miR-29a/b [21], miR-135a [33], miR-135b
[36], miR-195 [37], and miR-339-5p [38] modulate BACE1
expression in different models. Tau is regulated by, among
others, miR-16, miR-24c-5p, and miR-132 [39, 40]. To our
knowledge, only miR-384 has been reported to target both
APP and BACE1 [41] and miR-16 to target both APP and
tau [25, 26, 40]. No miRNA has been reported, thus far, to
regulate all three of these AD-associated proteins.

miR-298, encoded by the MIR298 gene, is a negative
regulator of BACE1 in murine cells [42]. However, potential
regulation of miR-298 on human BACE1 protein was not

evaluated in that study. We, therefore, studied the effect of
miR-298 on BACE1 expression in human cells. We found
that miR-298 negatively regulates both APP and BACE1
expression, resulting in a reduction of soluble Aβ levels. To
our surprise, we found miR-298 modulates expression of two
specific tau isoforms, reiterating the potentially important role
the miRNA may have in AD pathology. In vivo over-
expression of human miR-298 by AAV-miR-298 construct
resulted in nonsignificant reduction of APP, BACE1, and tau
in mice. Finally, we measured levels of miR-298 in human
brain (Brodmann areas—BA 21/22, aka middle and superior
temporal gyri), cerebellum, and posterior cingulate cortex
(PCC) from autopsied brains of both AD patients and age-
matched non-AD controls. Notably, miR-298 levels vary in
AD only in BA 21/22 samples. In summary, we report con-
vergent supporting evidence for the proposed miR-298 effect,
from human primary cell culture, human genetics, human
brains, and animal model spinal cords (Fig. 1). We posit that
miR-298 deserves more attention and study.

Materials and Methods

Identification of putative miR-298 binding sites on
the APP, BACE1, and MAPT 3′-UTR sequences

Multiple miRNA prediction utilities and databases [43–48]
were consulted to probe the 3′-UTR sequences of APP and
BACE1. Each used different algorithms to make determi-
nations [49]. In addition, the RNAhybrid [50] utility was
used to search for noncanonical miR-298 affinities with the
tau 3′-UTR. To further characterize the discovered sites, we
extracted selected mammalian sequence alignments from
the UCSC Multiz alignment of 100 vertebrate genomes
[51, 52].

Cell culture

Human glioblastoma-astrocytoma (U373) and HeLa cells
(obtained from ATCC, Manassas, VA) were grown in
Minimum essential medium (MEM) containing 10% fetal
bovine serum. Cells were trypsinized and counted by
trypan-blue exclusion when ~70% confluent. A total of
150,000 cells/well and 50,000 cells/well were seeded onto
24-well and 96-well plates, respectively, for experiments.
This sample size has been suitable for our previous work
with miRNA [30, 53, 54].

Human primary mixed-brain cultures

Human primary mixed-cell type brain cultures were grown
in our lab by methods we previously developed [30, 55].
The fetal tissues were obtained from the Birth Defects
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Research Laboratory (BDRL) at the University of
Washington with approval from the Indiana University
school of Medicine Institutional Review Board (IRB).
Briefly, brain tissues were cleaned of visible blood vessels

and sectioned. Sections were digested with trypsin and
gently triturated 10–12 times then centrifuged. Cells were
resuspended and plated onto PDL-coated plates/wells, using
supplemented neurobasal medium with antibiotics. Cells
were propagated 20 DIV and transfected with RNAiMAX
and Opti-MEM (ThermoFisher) as described previously
[49]. This sample size has been suitable for our previous
work with miRNA [30, 53, 54].

Generation of APP 3′-UTR mutants

Target sites of miR-298 on the APP 3′-UTR were identified
by Targetscan [43]. Each site was independently mutated
using the QuikChange Lightning kit (Agilent). Briefly,
primers were generated with regions overlapping the seven
nucleotide target sites. The APP 3′-UTR [28] was dena-
tured and mutagenic primers were extended with kit
reagents. Parental DNA was digested by Dpn I and trans-
formed into competent Escherichia coli. To confirm
mutagenesis, plasmids were analyzed on a DNA gel, con-
firming the introduction of a novel enzyme site that
replaced the miR-298 site. We did not successfully intro-
duce mutation into the full-length BACE1 3′-UTR-con-
taining reporter.

DNA transfection and reporter assay

One day before transfection, about 50,000 cells/well of
HeLa cells were seeded onto 96-well plate. A total of 300
ng of dual-luciferase psiCHECK 2 (Promega) plasmid
containing full-length APP 3′-UTR [28], mutagenized APP
3′-UTR, or BACE1 3′-UTR [38] was independently co-
transfected with 50 nM miR-298 using TransFectin
(BioRad). Cells were incubated 48 h before being lysed for
reporter assay. For mutagenesis experiments, 300 ng of the
APP 3′-UTR containing the mutagenized site was co-
transfected with miR-298.

Transfection in 24-well plates

For U373 transfections, ~150,000 cells/well were seeded
onto a 24-well plate. The following day, transfection
complexes were made with RNAiMax (ThermoFisher)
and 50 nM miRNA mimic or 20 nM siRNA in Opti-
MEM media (ThermoFisher). Complexes were allowed
to form for 20 min before being added to cells. Then
400 µl of media (no antibiotics) was added to each well.
Mock-transfection consisted of Opti-Mem media as well
as RNAiMax, but without miRNA mimics. Negative
control mimic (NCM), from ThermoFisher was trans-
fected at same nM concentration as test miRNA. Cells
were incubated 72 h until lysis. For mixed primary cell
transfection, 150,000 cells/well were plated and
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Fig. 1 Overview of study design. This describes a comprehensive and
integrated strategy of in silico identification, bioinformatics prediction
and followed by the validation, functional, correlation, association and
interspecies studies. In short, we report convergent supporting evi-
dence for the proposed miR-298 effect, from human cell culture
transfection and protein studies, human genetics, human brains, and
animal model CNS. We have made a convincing case that this
molecule deserves more attention and study as shown in subsequent
figures. a miR-298 was identified as a potential candidate from rodent
cell studies [42]. We used in silico database and prediction utilities to
identify candidate target sites on the APP and BACE1 3ʹ-UTR
sequences. These bioinformatic predictions informed further explora-
tion. b We first created 3ʹ-UTR APP and BACE1 fusions in dual-
reporter luciferase vectors, which were then optimized and used for
validation studies. We co-transfected the clones into human-origin cell
lines with miR-298 mimics, with miR-298 mimics plus antagomir
inhibition, and mutated clones with miR-298 mimics. c We followed
validation with functional studies, and measured levels of APP,
BACE1, and tau proteins in cell lines and primary human brain cell
cultures. We treated cultures with miR-298 mimics or mimics plus
antagomirs to measure potential changes in target protein levels.
d Upon validation of binding sites, we also tested levels of miR-298 in
human control and AD brain samples, specifically by qRT-PCR.
Surveys of APP and BACE1 protein levels in a portion of these brain
samples have been published elsewhere [28, 38]. Investigation
between miR-298-associated SNPs and endophenotypes of AD
patients revealed that potentially important connections between miR-
298-associated SNPS vs. Aβ levels and tau phosphorylation. This
information led us to expand functional studies to include potential
effects of miR-298 treatment on tau levels as well as APP and BACE1.
f Finally, we compared interspecies responses in mouse models with
mmu-miR-298.
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transfections were performed at DIV 17 using 75 nM
miRNA mimic, 75 nM miRNA antagomir, and 50 nM
siRNA. Cells were harvested 72 h post transfection
unless described otherwise.

Cell lysis and procurement of lysates

Cells were lysed using 100 µl mammalian protein extraction
reagent (M-PER, Thermo) buffer containing protease
inhibitor cocktail (Roche) and 10% sodium dodecyl sulfate
(SDS). Cells were collected in 1.5 ml tubes and centrifuged
at 11,000 g for 10 min to obtain supernatants. The super-
natants were boiled using Laemmli sample buffer (LSB;
final concentrations in lysate: 30 mM Tris, pH 6.8,
1% SDS, 12.5% glycerol, 0.005% bromophenol blue, 10%
β-mercaptoethanol).

SDS–polyacrylamide gel electrophoresis (SDS–PAGE)
and western blotting

Equal amounts of denatured protein cell lysates were loaded
onto 26-lane bis-tris criterion gels (BioRad) and separated
using XT-Mops (BioRad) at 200V for ~70min. Proteins were
transferred onto a PVDF membrane using the iBlot system
(ThermoFisher) and blocked using 5% milk in tris-buffered
saline containing Tween-20 (TBST). Anti-APP (22C11,
Millipore, 1:1000), anti-BACE1 (D10E5, Cell Signaling
Technologies, 1:500) or anti-BACE1 (Abcam, 1:500), anti-
Total tau (tau-5, ThermoFisher, 1:1000), anti-β-actin (Sigma,
1:500,000), anti-α-tubulin (Sigma, 1:500,000) were diluted in
blocking agent (5% in milk/TBST) and probed separately
overnight at 4 °C. After washing, appropriate horseradish
peroxidase-conjugated secondary antibody was applied for
1 h and chemiluminescence (Pierce) was performed to obtain
western blotting images. In order to study the effects of miR-
298 on soluble APP (sAPP), conditioned media were ana-
lyzed on a gel and sAPP detected using 22C11.

Assay of soluble Aβ40 and Aβ42 peptides by
enzyme labeled immunosorbent assay (ELISA)

Using sandwich-based ELISA kits for Aβ40 and Aβ42 from
IBL-America (Minneapolis, MN), levels of both soluble
peptides were measured in the conditioned media of trans-
fected cells. A standard curve was generated in accordance
with the protocol to obtain pg/ml concentration of each well
for each peptide.

Human brain samples from AD and age-matched
noncognitively impaired (NCI) controls

Age-matched samples of temporal lobe (TL) (BA 21/22) and
cerebellum from control (CTL) and AD subjects representing

both sexes were obtained from the University of Kentucky
AD Research Center Brain Bank, whereas PCC (BA 23) was
obtained from the Rush AD Research Center Brain Bank
(Table 1). Exclusion criteria for cases selection at both sites
included evidence of synucleinopathies such as Parkinson’s
disease and Lewy body disease, frontotemporal dementia,
argyrophilic grain disease, vascular dementia, hippocampal
sclerosis, and/or large strokes or lacunes.

RNA extraction

RNA was extracted from frozen tissue using a modified
Ambion PureLink mini kit protocol (#12183018A). Briefly,
between 10 and 25 mg of tissue was placed in a 2 ml round
bottom tube. One milliliter of Trizol (ThermoFisher
#15596026) was added. Tissue was sonicated on ice until
homogenous, and was allowed to incubate for 5 min at
room temperature. Then 200 μl of chloroform was added,
and the sample was vortexed for 15 s. Following a 3 min
incubation at room temperature, the samples were cen-
trifuged at 12,000 × g for 15 min at 4 °C. The upper aqueous
layer was transferred to a clean 1.5 ml tube, and an equal
volume of 70% ethanol was added. The sample was vor-
texed and then processed following the manufacturer’s
instructions. RNA was eluted in a final volume of 50 μl of
nuclease free water, and was then quantified to be used as a
template for cDNA synthesis.

MicroRNA quantification by qRT-PCR

Quantitation of miR-298 levels was determined using two
methods as described below. miR-298 levels in human
tissue were analyzed by qPCR using both relative and
absolute quantitative techniques. For relative quantitation, a
probe-based assay for miR-298 (TaqMan 002190) was
measured and compared with the control small RNA
RNU48 (TaqMan 001006 labeled with VIC) [56]. Briefly,
template for qPCR was generated using the TaqMan
microRNA reverse transcription kit (Applied Biosystems
4366596) following the manufacturer’s recommended pro-
tocol with an input of 10 ng of RNA. qPCR was performed
on an ABI 7500 instrument in 20 μl reactions, which were
incubated for 40 amplification cycles. Each reaction
contained 1.3 μl of reverse transcription product as tem-
plate, 2× master mix minus uracil-N-glycosylase (UNG)
Applied Biosystems 444040), and each of the TaqMan
assays listed above. Ct values were determined using a
constant threshold, and fold change was calculated by the
delta-delta Ct method.

Human hsa-miRNA-related reagents were procured
commercially. The lyophilized and frozen powder was dis-
solved in RNase-free water, and the concentration and purity
was checked by NanoDrop (ThermoFisher). Dharmacon
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(Lafayette, CO) supplied miRIDIAN microRNA mimics are
double-stranded RNA oligonucleotides designed to supple-
ment endogenous microRNA activity and the mature
miRNA sequence is shown below: hsa-miR-298—AGCA
GAAGCAGGGAGGUUCUCCCA. (Dharmacon, Cat# C-
301212–01–0005); hsa-miR-298 inhibitor—the sequence is
proprietary of Dharmacon (Cat# IH-301212–02). Negative
control mimic 2 (NCM2)—UUGUACUACACAAAAGU
ACUG. (Caenorhabditis elegans miR-239b) (Dharmacon,
Cat# CN002000–01–05).

For absolute quantification, the TaqMan Advanced cDNA
synthesis kit (Applied Biosystems A28007) was used to
produce template for qPCR. Ten ng of RNA was poly-
adenylated, ligated to an adapter, reverse transcribed, and
amplified, resulting in cDNA capable of being interrogated
with any TaqMan Advanced miR assay. Then qPCR ampli-
fication reactions were assembled including 2 μl of miR-AMP
product as template, 2× PrimeTime master mix (Integrated
DNA Technologies 1055772), and TaqMan Advanced assay
miR-298 (Applied Biosystems 478430) in a total of 10 μl. The
reactions were subjected to 40 rounds of amplification in an
ABI 7500 thermocycler. A standard curve of not less than five
data points was created using known concentrations of an
miR-298 synthetic oligonucleotide (IDT, Coralville, Iowa). Ct
values were determined using a constant threshold. Con-
struction of the standard curve was performed by creating a
scatter plot in Excel based on the Ct values of the samples of
synthetic miR-298. The x-axis of the plot was converted to
log scale, and a logarithmic trend line was fitted to the stan-
dards. The equation of the slope and the R squared value was
displayed on the graph. Concentrations of unknown samples
were determined by extrapolation using the slope equation
generated by the standard curve.

Generation of mice overexpressing miR-298

AAV9 vector plasmids containing an expression cassette
consisting of a human elongation factor-1α promoter fol-
lowed by miR-298 or mock sequence and human cytome-
galovirus promoter followed by cDNA encoding GFP, were
provided by SignaGen Laboratories (Rockville, MD). A
viral load of 1011 vector genomes of each of these constructs
was injected into the tail veins of 5 weeks old C57Bl6 mice,
as previously published [57]. The study was carried out in
accordance with the National Institute of Health Guide for
the Care and Use of Laboratory Animals and was approved
by the National Institute of Neurological Disorders and
Stroke Animal Care Committee. All experiments were
conducted blindly by third party concealment of treatments
with individually uniquely coded vials. Animals
were assigned to treatment groups via Research Randomizer
[58].

Preparation of mouse spinal cord lysates

Lysates from spinal cords were denatured at 95 °C in 1 ×
LSB and processed for SDS–PAGE. For measuring tau
protein, samples were loaded as pseudoreplicates and the
average value of pseudoreplicates from each sample was
averaged and provided a data point shown. For APP and
BACE1, samples were loaded as single replicates and are
from the same western blot. Proteins were normalized to
Ponceau stain values obtained from a region at a similar
molecular weight as each protein of interest.

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
phenotype and biomarker determination

Inclusion and exclusion criteria, clinical and neuroimaging
protocols, and other information about ADNI have been
published previously [59] and can be found at www.adni-
info.org. Demographic information, whole-genome sequen-
cing data, neuropsychological test scores, and diagnostic
information are publicly available from the ADNI data
repository (http://www.loni.usc.edu/ADNI/). Baseline CSF
samples were obtained using previously [60] reported
methods for three CSF measurements (Aβ42, total tau (t-tau),
and tau phosphorylated at the threonine 181 (p-tau181p)).

ADNI whole-genome sequencing (WGS) analysis

WGS was performed [61] on blood-derived genomic DNA
samples obtained from 817 ADNI participants. Samples were
sequenced on the Illumina HiSeq2000 using paired-end read
chemistry and read lengths of 100 bp (www.illumina.com).
The resulting qseq files were converted into fastq files, (flat
text for Phred). An established next-generation sequencing
analysis pipeline based on Genome Analysis Toolkit (GATK)
was used [61]. Quality checks and read statistics were per-
formed on raw sequence data using FastQC. Short-read
sequences were mapped to the NCBI reference human gen-
ome (build 37.72) using the Burrows–Wheeler Aligner,
allowing for up to two mismatches in each read. During the
alignment, we used only bases with Phred Quality >15 in each
read to soft clip low-quality bases, retain only uniquely
mapped pair-end reads, and remove potential PCR duplicates.
Local realignment of any suspicious reads after initial align-
ment further refined results. Reported base calling quality
scores obtained from the sequencer were recalibrated to
account for covariates of base errors, such as sequencing
technology and machine cycle.

Realigned reads were written to a BAM file for further
analysis to identify all variants with statistical evidence for
an alternate allele present among samples using GATK
HaplotypeCaller for multi-sample variant callings [62]. For
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variants that passed recommended variation quality criteria,
ANNOVAR was used to annotate all variants’ single
nucleotide polymorphisms (SNPs) and short insertion/
deletions (indels). We performed standard quality control
procedures in WGS to assess quality and remove indivi-
duals and genetic variants with poor quality. We excluded
variants that did not pass variant quality score recalibration
step using GATK in the WGS analysis pipeline, and we
removed variants with genotype quality scores < 20. Quality
of variant calls was assessed by comparing sequencing-
derived SNPs with those obtained from the Illumina Omni
2.5 M genotyping array in order to estimate the concordance
rate for each individual.

Furthermore, in order to prevent spurious association due
to population stratification, we selected only non-Hispanic
Caucasian participants (N= 757; 259 cognitively normal
controls, 219 early MCI, 232 late MCI, 47 AD cases), which
clustered with HapMap CEU (Utah residents with Northern
and Western European ancestry from the CEPH collection) or
TSI (Toscani in Italia) populations using multidimensional
scaling (MDS) analysis (www.hapmap.org) [63].

Statistical analysis

Generalized linear models (glm) and analysis of deviance
(ANOVA) were used where applicable, followed by pair-
wise comparisons of estimated marginal means via false
discovery rate-adjusted p values [64]. In the case of pseu-
doreplicates, generalized linear mixed-level models were
substituted for glm. Using all WGS-identified SNPs in the
MIR298 gene region, we performed an SNP-based asso-
ciation analysis using a linear regression. Potential con-
founding factors (age, sex, and batch) for CSF
measurements were tested as covariates. The glm relaxes
assumptions conventional linear models, such as gaussian
distribution and homoscedasticity. Variances are not
required to be similar between groups.

Results

Overview of study design

We employ a comprehensive and integrated strategy of in
silico identification, Bioinformatics prediction and followed
by the Validation, Functional, Correlation, Association and
Interspecies studies (Fig. 1). In short, we present convergent
evidence in support for the proposed miR-298 effect, from
human cell culture transfection and protein studies, human
genetics, human brains, and animal model brains, as shown
in subsequent figures.

Identification of miR-298 as a putative regulator of
APP, BACE1, and MAPT

miR-298 is predicted to target the 3′ UTR of both APP
and BACE1, according to multiple bioinformatic pre-
dictive algorithms (Table 2). The highly negative ΔΔG
[47] values of −14.24 for the APP 3′-UTR and −13.22
for the BACE1 3′ UTR predict strong binding efficiency
between miR-298 and the APP and BACE1 UTRs.
PhastCons [65, 66] scores suggest that target sites for
miR-298 on the UTRs are well-conserved. Whereas, the
context ++score percentile [67] suggests that the pre-
dicted miRNA sites on both UTRs are highly reliable. For
the APP 3′-UTR, miR-298 has two possible target sites: A
7-mer-m8 target sequence and a 7-mer-A1 sequence
(Fig. 2a). Both these target sites are highly conserved
across the seed sequence, with weaker homology for the
rest of miR-298. miR-298 has one 7-mer-A1 predicted site
on the BACE1 3′-UTR (Fig. 2b) which is also well-
conserved across species.

After performing an analysis of association between
known miR-298 associated SNPs and AD endophenotypes,
(See “Single nucleotide polymorphisms” section), we dis-
covered that SNP rs6070629 is significantly associated with
elevated phospho-tau in CSF. Bioinformatics tools such as
TargetScan, microRNA.org, and PITA did not predict miR-

Table 2 miR-298 predictions of interaction with APP and BACE1 3′-
UTRs.

Algorithm Scorea

APP BACE1

TargetScanHuman 7.1 43b 83 79

PicTar 44c NA NA

DIANA-microT 45d 0.871 0.644

microRNA.org 46e 0.7359 0.6359

PITA 47f −14.24 −13.22

rna22 48g −20.9 −12.1

aNone of these utilities indicated interaction between the canonical
miR-298 seed sequence and the tau 3′-UTR
bContext ++score percentile is a rank of affinity between a given
miRNA and target sequence vs. other miRNAs in the database
cPicTar could not scan miR-298. It is not conserved across mammalian
species
dmiTG score is weighted sum of the scores of all identified MREs
(hidden Markov model) on the 3′-UTR
ePhastCon score is based on conservation of target site (hidden
Markov model)
fddg score is based on hybridization energy and site accessibility
gFolding energy (kcal/mol), allowing for a single G:U bulge
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298 as targeting MAPT. Therefore, we searched for non-
canonical binding sites using RNAhybrid 2.2 [50, 68] and
found a possible miR-298 binding site on the MAPT 3′-UTR
(Fig. 2c). This site is not conserved in rat or mouse MAPT 3′-
UTRs, but it is conserved in rhesus monkey sequence.

miR-298 targets both the APP 3′-UTR and BACE1 3′-
UTR in human glial cell cultures

Co-transfection in U373 cells of miR-298 with a reporter
vector containing the full-length APP 3′-UTR (Fig. 3a)

3’- ACCCU-CU---UGGA-GGGACGAAGACGA -5' hsa-miR-298 
||||| ||   :||| :||||  ||||||

5’- UGGGAUGAAUUGCCUGUCCUGGAUCUGCU -3’ Human
5’- UGGGAUGAAUUGCCUGUCCUGGAUCUGCU -3’ Chimpanzee
5’- UGGGAUGAAUUGCCUAUCCUGGAUCUGCU -3’ Rhesus Monkey 
5’- UGGGAUGGACUGU---------------- -3’ Mouse
5’- UGGGAUGGACUGC---------------- -3’ Rat
5’- UGGGAUGGACUGCCUGCCCUGGACUCAUC -3’ Pig
5’- -----------ACUGA--------GGACC -3’ Horse 
5’- -----------CCCCGCCCC-----CGCC -3’ Dog

A

B

C

hsa-miR-298 3’- ACCCU-CUUGG--AGGGACGAAGACGA -5’
|     | ||   |: |||||||||||

Human 5’- UUUACUGUACAGAUUGCUGCUUCUGCU -3’
Chimp 5’- UUUACUGUACAGAUUGCUGCUUCUGCU -3’
Rhesus 5’- UUUACUGUACAGAUUGCUGCUUCUGCU -3’
Mouse 5’- CUUACUGUACAGAUUGCUGCUUCUGCU -3’
Rat 5’- CUUACUGUACAGAUUGCUGCUUCUGCU -3’
Pig 5’- UUGACUGUACAGAUUGCUGCUUCUGCU -3’
Horse 5’- UUUACUGUACAGAUUGCUGCUUCUGCU -3’
Dog 5’- UUUACUGUACAGAAUGCUGCUUCUGCU -3’

3'- ACCCUCUUGGAGG-------GA--CGAAGACGA -5' hsa-miR-298 
||    ||||            :|||||| 

5'- CAAGAAUU-CUCCAAAAC--AA--UUUUCUGCA -3' Human 
5'- CAAGAAUU-CUCCAAAAC--AA--UUUUCUGCA -3' Chimp
5'- CAAGAAUU-CUCCAAAAA--AA--AUUUCUGCA -3' Rhesus
5'- CAAGAAUU-CUCCAAAAAUUAA--UUUUCUGCA -3' Mouse
5'- CAAGAAUU-CUCCAAAAAU-AA--UUUUCUGCA -3' Rat
5'- CAAGAAUU-CUCCCCCCA--AA--UUUUCUGCA -3' Pig
5'- CAAGAAUU-CUCCAAAAA--AAAAUUUUUUGCA -3' Horse 
5'- CAAGAAUU-CGCCCAAGA--AA--UUUUCCGCA -3' Dog

3'-ACCCUCUUGGAGGGACGAAGACGA -5' hsa-miR-298
||:|:| |   |||:||||||

5'-GAGGGGGAGCAGACUGUUUCUGCA-3' Human
5'-GAGGGGGAGCAGACUGUUUCUGCA-3' Chimp
5'-UGAGGGGAGCAGACUGUUUCUGCA-3' Rhesus 
5'-GAGGGGAAGAGGGGUGUUUCUGCA-3' Mouse
5'-GAGGGGGGGAGGGGUGCUUCUGCA-3' Rat
5'-GAGGGGGA-CAGACCAUUUCUGCA-3' Pig
5'-GAUGGGGA-CAGACCAUUUCUGCA-3' Horse
5'-GAGGGGGA-GAGACCAUUUCUGCA-3' Dog

Fig. 2 Predicted binding sites of miR-298 on 3′-UTR sequences. a
APP. b BACE1. c MAPT. Multiz alignments [52] from the UCSC
genome database [51] of binding sites on human 3′UTR vs. other

mammalian sequences are also shown. The predicted miR-298 affinity
with MAPT would most likely operate via noncanonical binding.
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reduced luciferase expression by 25% compared with the
mock-treated cultures (Fig. 3b). miR-101, a previously
validated [28] microRNA capable of binding to the 3′-UTR
was used as a positive control and reduced luciferase
expression by 30%. NCM did not significantly change
luciferase expression. To establish target specificity of miR-
298, the two target sites on the APP 3′-UTR were muta-
genized separately. Mutagenesis of target site 1 did not
reverse miR-298-mediated targeting of the APP 3′-UTR
(Fig. 3c), whereas mutagenesis of target site 2 reversed
miR-298’s effects (Fig. 3d) on luciferase expression.

In HeLa cells, we also showed that co-transfection of
miR-298 with a luciferase reporter containing the full-
length BACE1 3′-UTR (Fig. 3e) reduced reporter expres-
sion by 25% compared with the mock treatment group
(Fig. 3f). An NCM not predicted to target the human

BACE1 3′-UTR did not reduce luciferase activity compared
with mock alone (Fig. 3f).

miR-298 inhibitor reversed miR-298-mediated APP
and BACE1 reduction in a mixed primary human
culture

By transfecting a mixed, primary human brain culture
developed in our lab [55] with miR-298 plus inhibitor oli-
gomers (Fig. 4a), we showed that miR-298 overexpression
reduced APP expression by 40%, whereas co-transfection
of an miR-298 antagomir partially reversed this effect
(Fig. 4b, c). The inhibitor alone had no effect on APP
expression, nor did a negative control miRNA mimic
(Fig. 4b, c). APP siRNA was used as a positive control and
knocked down APP expression by 75%. Likewise, BACE1
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Fig. 3 miR-298 targets the APP and BACE1 3′-UTR. a The full-length
APP 3′-UTR was cloned into psiCheck 2 (Promega), which contains
both a Renilla luciferase gene, fused to the APP 3′-UTR in our
experiment, and an internal control firefly luciferase gene. The fusion
vector was transfected along with miRNA mimics and controls into
cultured cells. When miRNA was active with the APP 3′-UTR,
luminescence was reduced vs mock-transfected cultures.

b Transfection of miR-298 in HeLa cells reduces APP 3′-UTR-
mediated luciferase expression. c Mutation of target site-1 does not
reverse this effect. d Mutation of site 2 reverses the effect. e The full-
length BACE1 3′-UTR was cloned into psiCheck 2 and transfected
into cell cultures along with miR-298 and control oligomers. f miR-
298 also reduces BACE1 3′-UTR-mediated luciferase expression.
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expression in the same mixed, primary human brain culture
(Fig. 5a) was reduced by miR-298 (Fig. 5b, c) compared
with mock-transfected cells. Co-transfection of the antag-
omir reversed miR-298-mediated reduction of BACE1
(Fig. 5b, c).

miR-298 alters APP levels in a dose-responsive and
time-sensitive fashion

We used cell lysates to study the effect of miR-298 on APP
at various doses and conditioned media to examine the
time-course kinetics of miR-298 activity, by western
immunoblotting. Levels of total APP densitometry, adjusted
by β-actin were significantly reduced by increasing dose vs
no significant reduction for NCM-treated cells (Fig. 6a). In
addition, the effect of miR-298 dose leveled off in a non-
linear fashion.

Levels of sAPP in miR-298-treated cell conditioned
media were significantly reduced compared with mock-
transfected cells across the time series of 1–4 days
(Fig. 6b). A further confounding element was that both
sets of cultures (treated and untreated) produced sAPP at
an ascending then decreasing rate, which we “modeled

out” by treating time as a 2nd-order polynomial. Notably,
both time and miRNA treatment were significant effects,
but miRNA treatment did not alter the trajectory of sAPP
production over time. These results were consistent with
results obtained from a western blot using cell lysates
measuring intracellular (and membrane-bound) APP (data
not shown).

miR-298 treatment reduced levels of soluble Aβ
species as well as soluble APP (sAPP)

In conditioned media from transfected wells, miR-298
reduced significantly levels of both Aβ40 and Aβ42 pep-
tides (Fig. 7). Consistent with western blot results with APP
and BACE1, coadministration of the antagomir to miR-298
reversed miR-298-mediated reduction of both Aβ40 and
Aβ42 peptides (Fig. 7).

miR-298 altered levels of two specific isoforms of
tau

Using lysates obtained from mixed, primary human
brain cultures [57], we tested possible modulation of
MAPT levels by miR-298, and we observed that miR-

Fig. 4 miR-298 inhibitor partially reverses miR-298-mediated reduc-
tion of APP protein in human primary brain culture. a Primary human
mixed-brain cell cultures were mock-transfected or transfected with
APP siRNA, miR-298, miR-298 inhibitor (antisense to miR-298),
miR-298 plus inhibitor, or NCM. Cells were cultured 72h after
transfection, lysed, and cell lysate proteins were analyzed on
SDS–PAGE followed by western blotting for APP. b Reduction by
miR-298 is less severe than that imposed by APP siRNA. n= 4.
Pairwise differences (p ≤ 0.05) are indicated by letters. Treatments
sharing a letter did not significantly differ. c The addition of miR-298
inhibitor reverses miR-298-mediated reduction in APP levels.

Fig. 5 miR-298 inhibitor reverses miR-298-mediated reduction of
BACE1 protein in human primary brain culture. a Primary human
mixed-brain cell cultures were mock-transfected or transfected with
APP siRNA, miR-298, miR-298 inhibitor, miR-298 plus inhibitor, or
NCM. Cells were cultured further after transfection, lysed, and lysate
run on SDS–PAGE followed by western blotting for BACE1.
b Western blot of BACE1 levels. c The Addition of miR-298 inhibitor
reverses effect of miR-298 on BACE1 levels. n= 4, pairwise differ-
ences (p ≤ 0.05) are indicated by letters. Treatments sharing a letter did
not significantly differ.
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298 did not significantly alter overall tau levels
(Fig. 8b). However, three potential tau isoforms
appeared by western at 55 (Fig. 8a, c), 50 (Fig. 8a, d),
and 48 kDa (Fig 8a, e) approximate MW. When each
band was quantified separately, we noticed that the
55 kDa and 50 kDa bands were significantly reduced
following miR-298 treatment vs. mock treatments
(Fig. 8c). β-actin was used as a loading control and was
not changed significantly across any groups. We should
mention that several other smaller bands (<48 kDa) also
appeared in our blot, but these were excluded from

analysis as we wished to constrain ourselves to sizes
known to associate with tau protein.

In vivo overexpression of human miR-298 resulted
in nonsignificant reduction of APP, BACE1, and tau
proteins but elevations of corresponding mRNA
levels in mice

Using spinal cord lysates obtained from experiments
described previously [57], we measured the expression of
APP, BACE1, and the 55 and 50 kDa isoforms of tau from
the brains of control and miR-298 overexpressed mice. We
found that miR-298 overexpression did not correspond to
significant differences in levels of any of the proteins
measured, although a trend for reduction was present in all
three proteins (Supplementary Fig. 1).

Human miR-298, but not mouse miR-298, negatively
regulates endogenous APP and BACE1 in human
cells

Although there is limited homology between the sequences
of mature human miR-298 (hsa-miR-298) and mouse miR-
298 (mmu-miR-298), seed sequences of miR-298 in the two
species have a perfect complementarity except for one
nucleotide at the 6th position from the 5′ end of the start of
the seed sequence (Fig. 9a).

Transfection of hsa-miR-298 into human U373 cells
reduced APP expression by 40% (Fig. 9b, c), compared
with mock-transfected cells, whereas neither
BACE1 siRNA nor mmu-miR-298 changed APP expres-
sion significantly (Fig. 9b, d). Hsa-miR-298 overexpression
and administration of BACE1 siRNA reduced BACE1
expression by 60% and 80% respectively. Mouse miR-298
did not have a significant effect on APP expression (Fig. 9c,
p > 0.05); however, an increase in BACE1 expression was
observed (Fig. 9d, p < 0.05).

miR-298 levels vary in AD only in the temporal lobe

We measured levels of miR-298 in TL, PCC, and cere-
bellum from brains of both AD patients and age-matched
non-AD controls (Fig. 10a). We used the 2−Δ ΔCt method,
adjusted to non-AD TL= 1 (Fig. 10b, c) and absolute
quantification (Fig. 9d, e). When examining each region
separately (Fig. 10c), miR-298 was significantly (p < 0.05)
reduced in TL only. Notably, recently acquired miRNA
sequencing data demonstrated a significant ~3-fold upre-
gulation of miR-298 in the PCC of AD compared with non-
AD subjects (non-AD [n= 10]: 0.65 ± 0.26 [mean ± S.D.];
AD [n= 10]: 1.66 ± 0.5; p < 0.0001). However, qPCR-
based query of PCC samples did not return significant dif-
ferences (Fig. 10c). When we looked at the three brain
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transfection reagent containing no miRNA mimic (Mock). Culture con-
ditioned media was harvested at 1, 2, 3, and 4 days. sAPP was measured
by western blot followed by densitometry. For all time points, n= 4.

5646 N. Chopra et al.



regions, separated into non-AD and AD, the only significant
difference was that TL in non-AD subjects was significantly
(p < 0.05) higher than PCC. Although non-AD TL levels

were higher than non-AD cerebellum levels, this difference
was not significant. In short, the only apparent effect of
AD we observed was reduction of miR-298, measured by
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2−ΔΔCt method, in the TL. However, differences were not
significant if looking at miR-298 levels by absolute
quantification.

Single nucleotide polymorphisms (SNPs) in the miR-
298 gene associated with AD-related CSF
biomarkers

We identified 33 common SNPs (minor allele frequency
(MAF) ≥ 0.05) within ±10 kb from the miR-298 gene
boundary (Fig. 11) from whole-genome sequencing data.
We performed linkage disequilibrium (LD) analysis. LD is
a nonrandom association of two sequence features, such as
SNPs. Mapping multiple LD events can also reveals hap-
lotype blocks. Of the 33 SNPs, 32 exist within four LD
blocks (Fig. 11) of 2, <1, 9, and 1 kb in length. Two of these
SNPs (Fig. 12a, rs6070629, rs79259988) at 8.4 kb upstream
and 1.9 kb downstream of the pre-miR-298 coding
sequence, respectively, associated with AD biomarkers. The
minor allele of SNP rs6070629 is relatively common (25.8
± 2.6% in reported frequency). Subjects carrying the minor
“G” allele of the SNP have higher CSF τ181p (τ phos-
phorylated at threonine 181), in a dose-dependent fashion
(β= 0.045, p= 0.0048) GG>GT>TT (Fig. 12b). SNP
rs79259988 (8.9 ± 0.8% frequency) in miR-298 is non-
significantly associated with CSF Aβ42, specifically the

minor allele associated (β=−12.41, p= 0.160) with
reduced CSF Aβ42 level (Fig. 12c). We found one SNP
(rs751823623) specifically within the miR-298 seed
sequence, but it had no association with AD, and the minor
allele was extremely rare (<0.0001%).

Discussion

Although it remains controversial, the amyloid hypothesis [6]
suggests that Aβ generation is a causative event in the onset of
AD. Therefore, the reduction of the potentially toxic Aβ
peptide remains a viable therapeutic goal. While the peptide
could be reduced by other means, such as targeting various
Aβ-degrading enzymes [69], we focused on reducing gen-
eration of Aβ. Drug therapies targeting APP and BACE1 have
had limited success due to factors including effects of drugs
on organs other than the brain [11] as well as the limitation of
specificity. It is difficult to produce drugs that would target
both crucial proteins involved in the generation of Aβ; namely
APP and BACE1. The other dominant hypothesis of AD
etiology is that it is primarily due to intracellular accumulation
of p-tau [70]. A drug target that modulates all three of these
potential participants in AD could be highly impactful.
MicroRNAs are short, endogenous, single-stranded RNA that
serve as a “socket” for RISC regulation of mRNA translation.
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Therefore, the identification of an miRNA that targets both
APP and BACE1 would be advantageous in the reduction of
Aβ. In addition, accumulation of hyperphosphorylated tau is a
hallmark of AD and multiple other tauopathies. An miRNA
that might happen to regulate, even in part, both Aβ and tau
could potentially be quite useful for therapeutic development.

Previous work has shown miR-298’s role in targeting
proteins implicated in cancer, such as catenin delta 1 [71],
apoptotic protein Bax [72], and polycomb protein enhancer of
zeste [73]. MiR-298 has been shown to improve outcomes in
a spinal muscle atrophy model [57] and to paradoxically show
worsening of spinal cord injury outcomes in murine models
[74]. Mouse miR-298 targets mouse BACE1 [42], but effects
of human miR-298 on human BACE1 are unknown.

Using a multitude of approaches (Fig. 1), we found that
miR-298 regulates protein expression of APP, BACE1, and
at least two isoforms of tau. Initially, we found that miR-
298 was a putative modulator of both BACE1 and APP
using bioinformatics algorithms. We confirmed that miR-
298 targets the APP 3′-UTR via one of the two predicted
target sites. The putative seed site of miR-298 on BACE1
3′-UTR was not mutagenized to test its validity. Although

the presence of a predicted miRNA binding site strongly
favors that the mechanism is direct regulation through
conventional RISC mechanisms, it always remains a
(however distant) possibility that miR-298-mediated
reduction of BACE1 would be through an unidentified
and entirely speculative indirect mechanism. We also con-
firmed that miR-298 reduces APP and BACE1 protein
expression in two different cell cultures.

Murine overexpression of miR-298 in vivo did not
produce a statistically significant alteration in APP,
BACE1, or t-tau protein or mRNA levels. While this
result does prima facie disagree with our results obtained
in tissue cultures, it is important to note that all three
proteins showed nonsignificant reductions and therefore
we believe that a larger sample size may result in more
statistically robust reductions. Thus, we infer that cross-
species interaction may be weaker, not absent. We
reiterate that human miR-298 and the host mouse miR-
298 sequences differ. We used spinal cord because the
concurrently discovered SNP variations used CSF mar-
kers, and it was possible they reflected spinal cord dif-
ferences. We included the “negative” mouse data to
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illustrate limitations of using animal models in AD
research. Human systems (both the sequence and models)
must be used to verify animal results, and a negative
animal result does not necessarily entail a negative human
result, particularly given the differences between mature
hsa-miR-298 and mmu-miR-298 sequences. Cross-
species difference that may not be differences in the
specific “target site” can produce different results. We had
chosen the specific hsa-miR-298 viral delivery due to its
efficacy in reducing levels of androgen receptor in mouse
models [57], which we presumed would apply to other
mouse mRNAs’ translation vs miR-298. Our data suggest
that such presumptions of success (or failure) should be
treated with caution. Nevertheless, we found convergent
supporting evidence for the proposed miR-298 effect,
from human cell culture, human genetics, human brains,
and animal model nervous system tissue. A case can be
made that this molecule deserves more attention and
study [75].

In any case, to find an explanation for the negative result
in mice, we tested mouse miR-298 vs. human miR-298 in
human-derived cell cultures. The mouse miR-298 did not

reduce APP and BACE1 protein levels, while human miR-
298 was active. We noted poor conservation between miR-
298 sequences of both species. It is also worthwhile to note
that secondary structure of a given mRNA exerts a sig-
nificant effect upon miRNA activity [76]. Comparison of
the mouse and human APP 3′-UTR sequences, for example,
revealed that the mouse sequence was over 100 bases
shorter (data not shown), which would reasonably produce
important secondary structure differences.

When we examined known SNPs of hsa-miR-298, we
found an AD endophenotype associated with specific tau
phosphorylation. To capitalize on this serendipitous discovery
from clinically derived data, we tested miR-298’s role on tau
levels. We used lysates from our primary human mixed cul-
ture and found that miR-298 modulated a specific (55 kDa)
form of tau, but not t-tau or the major isoform (48 kDa). The
identification of the tau-immunoreactive 55 and 50 kDa bands
are unclear, but may represent specific tau isoforms or
phosphorylated tau moieties. The tau protein can be alter-
natively spliced into six forms [77], and miR-298 may act
upon a sequence within a specific exon. Using RNAhybrid
[50, 68], an algorithm that can predict noncanonical [78]

Fig. 11 Identification of relevant SNPs within the MIR298 gene
boundary. LD blocks for region proximal to MIR298 gene reveals four
blocks of SNPs. The top thick line represents a strand of a chromo-
some. The white bars on the blue line of the chromosome are SNPs
(single nucleotide polymorphisms) that have been identified and
sequenced. These SNP locations or loci are labeled in this picture
standard nomenclature. Each of these SNPs has a name that has the

format rs#…# where “#…#” is a numeric code of varying length. Each
SNP is represented by a labeled gray triangle below the thick blue line
(the chromosome). We identified 33 common SNPs (minor allele
frequency (MAF) ≥ 0.05) within ±10 kb from the MIR298 gene
boundary. Of the 33 SNPs, 32 exist within four LD (linkage dis-
equilibrium) blocks of 2, <1, 9, and 1 kb in length.
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miRNA interactions, we found a noncanonical predicted site
for miR-298 on the tau 3′-UTR. “Noncanonical” binding has
turned out to be remarkably common for miRNA activity
[79–83]. However, it is also possible that miR-298 reduction
of tau isoforms will be an indirect effect; viz a viz a different
intermediate protein. In the future, mutagenizing the putative
noncanonical site on the 3′UTR would determine whether
miR-298 modulates tau expression directly or indirectly. In
addition, miRNA regulation/disruption of mRNA splicing
through indirect pathways does exist [84, 85], including in
AD [84]. A post hoc query of the DIANA-microT database
[45] revealed miR-298 interactions with spliceosome com-
ponents DDX17, HNRNPL, and RBM74, among others.
However, miR-298 may instead alter tau phosphorylation
through acting on c-Jun N-terminal kinases (JNK) [74, 86],
and JNK alters tau phosphorylation [87]. Hence, we posit that
miR-298 modulated the expression of 55 and 50 kDa tau
protein moieties either directly via tau isoform transcript
regulation, or indirectly via spliceosome or tau kinase

regulation. Further mechanistic studies will be required to
elucidate the mechanism and functional consequences of this
miR-298-mediated tau pathway. In addition, we post hoc
queried the DIANA-microT database and found interactions
between miR-298 and the MAPK1 and PHKG2 kinases, both
of which also phosphorylate tau. Given that a miR-298 SNP
associated with differential tau phosphorylation in the SNP
association clinical sample, the latter is more likely. However,
each possibility would be worth investigating in future stu-
dies. Regarding tau, we observed a significant decrease in 55
kDa and 50 kDa tau protein bands and non-significant
decrease in 48 kDa and total tau proteins. Protein signals were
scanned and quantified independently by different raters. We
urge caution in interpretation, since the 50 kDa band,
though light and distinct, was not well separated from the
much darker and more widely expressed 48kDa band.
Attempts to resolve the two by adjusting exposure of ECL
signal or lowering loading protein samples would have
rendered both the 50kDa and 55kDa bands difficult or
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impossible to detect. However, if the analysis were done
for each individual band’s densitometry as a fraction of
total tau signal, we found the same results with 55kDa, but
the proportion of 48kDa tau vs. total tau was elevated
after miR-298 treatment (data not shown). Repeating the
experiment with several mixed brain cultures from HFB
samples of similar demography and clinical history could be
tried, beyond the three cases we tried (data not shown).
Unfortunately, obtaining a supply of HFB remains a critical
challenge [88]. Finally, in our experiments we observed 3
major tau forms, and not the six tau isoforms observed gen-
erally in case of adult human brain [89]. The progression of
tau expression from 3 to 6 forms, with or without 3 repeats,
and consequent tau’s expanding role from the fetal to
adult stage, would warrant an important area of further
investigation.

Potential complexity of miR-298 activity could reach
beyond even these pathways, given that miR-298 partici-
pates in interspecies communication of some form. That is
to say, miR-298 is among the known miRNAs whose levels
are altered by the gut microbiome, specifically in the ilium
[90]. In addition, microbiome manipulation in the ilium
resulted in disruption of several proteins’ levels, including
proteins regulated by miR-298. These included the cha-
perone FK06 binding protein 51 kDa (FKBP5). FKBP5
mediates oligomerization of tau [91]. Another potential
miR-298 target disrupted by manipulation of the ilium
microbiome was stearoyl-CoA desaturase enzyme 1
(SCD1). Desaturases underlie some tau hyperpho-
sphorylation pathways [92], and SCD1 in particular is ele-
vated in brains of AD patients [93]. How much this may be
connected to results in our cell culture studies, of course,
remains to be seen.

On searching for reported SNPs within the MIR-298
gene, we found one SNP (rs71828623) with a G/T mutation
within the seed sequence of MIR-298. However, it had no
reported association with any AD biomarker or sub-
phenotype. We also found other SNPs in proximity of the
MIR-298 gene, two of which were associated with the AD
biomarkers CSF phosphorylated tau (rs6070629) and CSF
Aβ42 (rs79259988). The specific phosphorylation var-
iant pT181-Qß associated with rs6070629 has also been
tested as a vaccine antigen. This vaccine induced robust,
protective immunity against tauopathy [94].

The predominant model of miRNA protein translation
suppression is that RISC binds to mRNA and destabilizes the
molecule [95]. We, therefore, tested whether or not induction
of overexpression of miR-298 would alter overall levels of
mRNA for APP, BACE1, and tau. We found that APP and
BACE1 mRNA levels were significantly reduced, while tau
reduction was not significant. Given that miR-298 reduced
levels of only a single tau variant, this is not surprising, since

the activity of miR-298 on tau may be through inducing
alternate splicing and/or phosphorylation.

When we examined expression of miR-298 in the human
brain by qPCR, we found that miR-298 levels were reduced
in AD, but only in the TL (BA 21/22). Both cerebellum and
PCC had no differences by disease status. Interestingly, pilot
miRNA sequencing of non-AD and AD PCC tissue from the
Rush cohort (n= 10/group) revealed a ~3-fold upregulation
of miR-298 in AD. The discrepancy between these data and
the qPCR-based results may be technology-specific, as a
systematic comparison of microarray profiling, qPCR, and
next-generation sequencing of miRNAs demonstrated that
miRNA levels derived from sequencing and qPCR could
differ by as much as 5 log2 [96]. Furthermore, we only found
the difference when looking at relative (ΔΔCt) measurement.
When we looked at absolute mass of miRNA, no apparent
AD-related change existed. Conclusive resolution of these
apparent paradoxes will require further work. However, we
do note reports that indicate both absolute and relative
quantification of mRNA may be of use [97]. Technical hur-
dles, such as circumventing the blood–brain barrier, still exist,
but advancing techniques, such as viral, liposomal, or
convection-enhanced delivery that may yet overcome this
issue [98–100]. Finally, a better picture would be obtained by
including brains from donors with subjective cognitive
decline or MCI [101, 102], since the consensus of the field
has evolved to include the premise that critical changes in
brains are most likely to happen well before any overt
clinical presentation. Nevertheless, our demonstration that
miR-298 modulates APP, BACE1, and tau isoform or phos-
phorylation levels has implications for its utility as a drug
target.

Currently approved treatments for AD consist of choli-
nesterase inhibitors and a single NMDA antagonist. While
ablation of BACE1 expression and/or activity has been
shown to reverse AD pathology in AD-transgenic mice
[103], clinical trials have been unsuccessful. In fact, the
majority of more recent anti-AD drug candidates have been
BACE1 inhibitors, but have been withdrawn due to toxicity
or lack of efficacy. The possibility may exist that a suffi-
ciently high dose of a BACE1 inhibitor may be inherently
toxic, due to BACE1’s multiple other substrates [104–106].
Treatments that target Aβ directly have also not fared well.
All these approaches share a single feature: They pick one
aspect of AD and target it exclusively. AD is a multifaceted
disorder. Even at its simplest, it cannot be reduced to a
tauopathy or an amyloidosis; AD is a tauopathy and an
amyloidosis. Therapeutics that target tau are being resear-
ched for AD, but trials are concentrating on the N terminus
of the tau protein, which is often truncated in AD [107]. An
alternative is an antibody-based approach [108], which is
being tested for progressive supranuclear palsy. However,
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anti-Aβ treatments for AD appear to be meeting limited
success. Perhaps a single target with multivalent effects
(e.g., APP, BACE1, and p-tau), may prove more useful. In
some cases, a single miRNA may play a role in multiple
disorders, such as the potential for miR-101 to be involved
in both AD and pulmonary fibrosis [109]. As a methodo-
logical note, our choice of hsa-miR-186 as a negative control
for APP regulation was not coincidental. This miRNA spe-
cies is known to downregulate BACE1 and its down-
regulation during aging may increase risk of AD [108, 111].

This present work significantly advances the field. Spe-
cific miRNAs play a critical role in brain aging, neuroin-
flammation, neurodegeneration, and brain trauma [112]
miRNAs play major roles in cognitive impairment in both
AD-like pathology and dementia with Lewy bodies
[113, 114]. For example, miR-455–3p may have protective
effects against abnormal APP processing and Aβ-toxicity in
AD [115]. Furthermore, specific miRNAs may associate
with mitochondrial metabolism, cholinergic imbalances,
and epileptiform activity [116, 117]. Notably, a family of
miRNAs that has strong implications in multiple disorders,
including neurodegenerative (miR-15/107) is significantly
expressed in human brain tissues [118, 119]. At the func-
tional level, neuronal-expressed microRNA-targeted pseu-
dogenes compete with coding genes in the human brain
[120]. How miR-298 could exert other roles beyond what
we report here warrants further investigation.

We identified miR-298 as a novel therapeutic target to
reduce expression of APP and BACE1 and reduce levels of
two moieties of t-tau. In addition, levels of Aβ peptides are
significantly reduced, presumably by reduction of both the
APP substrate and the rate-limiting BACE1 enzyme. This
result has applications to both understanding the mechanism
of AD as well as treating the neurodegenerative disorder.
Thus, miR-298 has the potential to be a regulator of multiple
proteins that are critical in AD etiology and development.

Data availability

The datasets generated during the current study are avail-
able from the corresponding author on reasonable request.
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