Machine Learning to Support an Interactive Theorem Prover

Salman Haider
DePauw University

Andy Le
DePauw University

Echo Wu
DePauw University

Brian T. Howard
DePauw University, bhoward@depauw.edu

Follow this and additional works at: https://scholarship.depauw.edu/srfposters

Part of the Computer Sciences Commons

Recommended Citation

This Poster is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Science Research Fellows Posters by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact bcox@depauw.edu.
Abstract
An Interactive Theorem Prover (ITP) is a computer program that can assist a human in creating a proof of a mathematical theorem or the correctness of a piece of software. At each step in the proof, the human can restart a model by choosing a tactic to attempt to make progress toward the goal. We are exploring the possibility of using Machine Learning (ML) to assist in this tactic selection. Building on recent work at UC Berkeley and Princeton, where they adapted the Coq ITP so that it could interface with ML libraries via the Python scripting language, we have been evaluating strategies to encode the current proof state to Coq ITP so that it could interface with ML libraries via the Python scripting language.

Interactive Theorem Proving
Interactive Theorem Proving (ITP) involves the use of a computer program to assist the development of formal proofs by human-machine collaboration. One of the popular ITP is Coq, which is a formal proof management system with a functional programming language - Gallina. Moreover, a language of Tactics in Coq guide the process of developing the steps of the proof. We use Abstract Syntax Tree (AST) as a way to present the syntax of programming language as a tree-like structure.

Previous Work
GamePad and CoqGym are prior recent projects on this topic. GamePad was released in the summer of 2018, CoqGym was a continuation of GamePad, released in the summer of 2019.

Both GamePad and CoqGym include a tool for interacting with Coq. GamePad was trained on 1,600 theorems leading to a proof of the Feit-Thompson Theorem in group theory, whereas CoqGym was trained on 71,000 theorems, covering a broad spectrum of both mathematics and program verification.

CoqGym generates complete tactics that can be used to obtain full proofs, whereas GamePad group all tactics into categories and only predicts the tactic, not the specific tactic.

Experiments
Our main focus of this summer project is to figure out ways to improve the CoqGym model to align better tactic recommendations for humans to develop proofs. In order to achieve this, we conducted four experiments, as listed below:

0. Original CoqGym model
1. Restrict to program verification proofs
2. Trivial AST input
3. Leave tokens in AST
4. Generate tactic_list (in progress)

0. We ran the original CoqGym model and got 17% accuracy on tactic prediction.

1. As mentioned previously, CoqGym was trained on over 71,000 theorems, covering a broad spectrum of both mathematics and program verification. Since we are only interested in the latter, we restricted the training and testing data to see if the machine can make more relevant connections. However, we did not see a significant change.

2. In order to make sure the inputs indeed have an impact on the model, we ran a version with trivial input. Rather than having a complex tree-like structure of data, we changed it to a single node. As a result, we ran into a notable drop, to 7% accuracy.

3. In the original CoqGym model, the tokens that hold module and identifier names were removed. Based on the second experiment, we hoped that more information will yield better results. Hence, we kept all these tokens and ran the model. Again, we did not see any changes.

4. The original CoqGym model calculated its accuracy based on a single prediction of the tactic. In this experiment, we will aim to change the model’s prediction to a list of plausible tactics, rather than only one. Since a human is involved in the process of constructing proofs, we assume that they can cognitively choose the correct tactic from that list. We are still in the process of running this experiment, we are also the most optimistic about this one.

Conclusions and Future Work
Although we were able to confirm that the CoqGym model is able to learn some patterns in the training data, we were unable to improve the tactic prediction accuracy beyond 17%. This is unlikely to be helpful as a hint tool in an interactive theorem prover.

One idea for future work is to modify the tactic decoder so that it generates a list of suggested tactics, where the less score will be low if any tactic on the list matches the expected (ground truth) tactic.

If the model can be modified to increase the accuracy rate, then further work will focus on integrating the tactic suggestions into an interface for Coq, such as CoqIDE. The long-term goal is to provide a tool that will help both students and professional programmers in producing verified software.

Given a model with sufficient accuracy that we could integrate into a system for interaction with Coq, our next step would be to conduct user studies to see if the tactic suggestions are indeed useful, for a range of possible users: students who are just learning to use Coq, experienced programmers who are attempting to produce verified software, and current Coq users looking for an additional tool to assist in their work.

References
- GamePad: Daniel Huang and Dawn Song (UC Berkeley), Prafulla Dhariwal and Ilya Sutskever (OpenAI), https://github.com/ml4tp/gamepad

Supported by the DePauw Science Research Fellows Program, the J. William Asher and Melanie J. Norton Endowed Fund in the Sciences, the Information Technology Associates Program and the Tenzer Technology Center, the DePauw Computer Science Department, and Google Cloud.