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Abstract We introduce a quotient of the Fomin-Kirillov algebra FK(n) denoted by
FKCn(n), over the ideal generated by the edges of a complete graph on n vertices that
are missing in the n-cycle graph Cn. In this quotient algebra, we establish a one-to-one
correspondence between the basis elements and the set of matchings in an n-cycle graph.
We prove that the Hilbert series of FKCn(n) corresponds to the q-Lucas polynomials, and
the dimension of this quotient algebra is equal to the Lucas number Ln. We also find the
character map of this quotient algebra over the Dihedral group Dn.
Keywords Lucas polynomial, Gröbner basis, ideal, quotient algebra, Hilbert series, n-
cycle graph

1. Motivation and Preliminaries

Fomin-Kirillov algebra FK(n) is a quadratic non-commutative algebra on generators xij =
−xji, where 1 ≤ i < j ≤ n, that satisfy the following relations [6].

(i) : x2
ij = 0, 1 ≤ i < j ≤ n;

(ii) : xijxkl − xklxij = 0; for distinct i, j, k, l such that 1 ≤ i, j, k < l ≤ n;

(iii) : xijxjk − xjkxik − xikxij = 0; if 1 ≤ i < j < k ≤ n;

(iii′) : xijxik − xjkxij + xikxjk = 0; if 1 ≤ i < j < k ≤ n.

(1.1)

If F ⟨xij⟩ is the free associated algebra generated by xij, 1 ≤ i < j ≤ n, then FK(n) is
the quotient of F ⟨xij⟩ over the ideal generated by the relations in (1.1).

While Fomin and Kirillov initially introduced this algebra with the motivation of calculat-
ing the structure constants of Schubert polynomials, it later garnered significant attention
in both algebraic and combinatorial contexts [1-3, 7-10].
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The analysis of subalgebras within the Fomin-Kirillov algebra has enhanced our under-
standing of this algebra, revealing a remarkable structural similarity to Coxeter groups
and their nil-Coxeter algebras [3].

Despite extensive research on various aspects of this algebra, numerous questions remain
unanswered. One such question pertains to its dimensionality. While the dimension of
FK(n) is known to be finite for n = 3, 4, 5, it remains uncertain whether it is finite or
not for n ≥ 6, [1, 3].

In this paper, to better understand the structure of FK(n) we study a quotient of it
denoted FKCn(n) associated with the subgraph n-cycle Cn of the complete graph on n
vertices. While FK(n) is associated to the complete graph on n vertices, FKCn(n) is
associated with the subgraph n-cycle Cn of the complete graph on n vertices. We find a
beautiful connection between this quotient algebra and the theory of Lucas polynomials.
Specifically we find that the Hilbert series of this quotient algebra is the q-Lucas polyno-
mial, and its dimension equals the Lucas number, as well the symmetry properties of this
quotient algebra under Dn is related to q-Fibonacci polynomials.
How much of the Fomin-Kirillov algebra and its unsolved questions can be explained or
understood in terms of number theory? I hope my present work serves as an introduction
toward my future research addressing this question.

1.1. Gröbner basis. In this paper, we focus on the generating set for the defining ideal
of the algebra, which is a Gröbner basis. According to non-commutative Buchberger
theory [11], the reduced Gröbner basis is unique up to monomial ordering. The monomial
ordering we employ in this work is known as graded lexicographic ordering (glex). Here
is how it is defined:

Definition 1.1. For monomials M1 and M2 we say

M1 <glex M2 if

{
degM1 < degM2, or
degM1 = degM2 and M1 <lex M2,

where the lexicographic ordering (lex) of monomials is introduced by first establishing a
variable ordering:

xij > xkl if

{
j < l, or
j = l and i > k,

.

With this variable ordering, the following rule completes the definition of our lexicographic
monomial ordering: For monomials M1 and M2 of the same usual degree d, we have:

• M1 <lex M2, if the first variable of M1 is less than the first variable of M2.

• If the first k variables happen to be the same, then compare the (k+1) st variables

2. A quotient algebra of FK(n)

We introduce the algebra FKCn(n) as the quotient of FK(n) by the ideal generated by
the edges of the complete graph on n vertexes that are missing in the subgraph n-cycle
Cn. In other words, we define FKCn(n) as following:

FKCn(n) =
FK(n)

I⟨missing edges in subgraph Cn⟩

=
F ⟨xij⟩

I⟨{generators of the defining ideal of FK(n)} ∪ {missing edges in Cn}⟩
.
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Here, FK(n) represents an algebra with generators {xij} and I⟨missing edges in subgraph Cn⟩
denote the ideal generated by the missing edges in the subgraph Cn. In other words by
putting the missing edges in (1.1) equal to zero we come up with the new set of relations
(2.1) associated to FKCn(n) as in the following definition.

Definition 2.1. For n > 3, we define FKCn(n), the quotient algebra of FK(n), as the
algebra on generators {x1n = −xn1, xm,m+1 = −xm+1,m, 1 ≤ m ≤ n − 1}, that satisfies
the following relations (Leading terms are underlined).

RCn ={x2
m,m+1 = 0, 1 ≤ m ≤ n− 1, x2

1,n = 0,

xm,m+1xm+1,m+2 = 0, xm+1,m+2xm,m+1 = 0, 1 ≤ m ≤ n− 2,

xn−1,nx1n = 0, x1nxn−1,n = 0, x12x1n = 0, x1nx12 = 0,

xm,m+1xl,l+1 − xl,l+1xm,m+1 = 0, 1 ≤ m ≤ l − 2, 3 ≤ l ≤ n− 1,

xm,m+1x1,n − x1nxm,m+1 = 0, 2 ≤ m ≤ n− 2}.

(2.1)

From the relations in (2.1) we have the following set of generators for the defining ideal
of FKCn(n).

Generators of defining ideal of FKCn(n) =

{x2
m,m+1, 1 ≤ m ≤ n− 1, x2

1,n,

xm,m+1xm+1,m+2, xm+1,m+2xm,m+1, 1 ≤ m ≤ n− 2,

xn−1,nx1n, x1nxn−1,n, x12x1n, x1nx12,

xm,m+1xl,l+1 − xl,l+1xm,m+1, 1 ≤ m ≤ l − 2, 3 ≤ l ≤ n− 1,

xm,m+1x1,n − x1nxm,m+1, 2 ≤ m ≤ n− 2}.

(2.2)

Remark 2.2. As mentioned earlier, the generators of FK(n) correspond to the edges of a
complete graph on n vertices. In contrast, the generators of FKCn(n) are specifically the
edges of the subgraph Cn within the complete graph on n vertices. These generators are
denoted as {x12, x23, · · · , xn−1,n, x1n}. Now let’s discuss the action of permutation group
on this algebra.

• Sn and FK(n): The symmetric group naturally defines an action on FK(n).
This action arises because the defining ideal of FK(n) remains stable under the
permutations in Sn. However when we consider FKCn(n), the situation changes.

• Sn and FKCn(n): The defining ideal of FKCn(n) is generated by the terms listed
in (2.2). This ideal is not stable under the action of Sn. for instance, consider the
term x2

12 from (2.2). Under the transformation (1n) ∈ Sn, goes into X2
2n, which is

not part of the original set of generators.

• Dn and FKCn(n): However there is a silver lining! The ideal defining FKCn(n)
is stable under the action of dihedral group Dn. Consequently, Dn defines a valid
action on FKCn(n). An action can be defined on a quotient algebra if and only if
the defining ideal remains stable under that action.

2.1. Dihedral group. Dihedral group is defined by
Dn = ⟨r, s|s2 = 1, rn = 1, (rs)2 = 1⟩.

We realize group Dn in the permutation group Sn, where

r = (12 · · ·n) and s =

{
(1, n)(2, n− 1) · · · (n

2
, n
2
+ 1), even n,

(1, n)(2, n− 1) · · · (n−1
2
, n+3

2
)(n+1

2
), odd n,

(2.3)
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Figure 1. Examples of reflections s in an n-cycle for even and odd n.
s = (16)(25)(34) in a 6-cycle and s = (15)(24)(3) in a 5-cycle.

are permutations on n vertexes (rotation and reflections in Cn, see Figure 1).

2.2. The stability of the defining ideal of FKCn(n) under Dn. It is easily shown
that the set of generators of the defining ideal of FKCn(n) in (2.2) is invariant under Dn.
So the defining ideal of FKCn(n) is stable under Dn. Therefore Dn defines an action on
FKCn(n).

2.3. The action of Dn on FKCn(n). We define the action of Dn realized as a permu-
tation group, on FKCn(n) as:

Dn : FKCn(n) → FKCn(n) by σ(M + I) 7→ σM + I, (2.4)

where the action of σ ∈ Dn on a monomial M , is defined via its action on a variable xij

(where j = i+ 1), representing an edge of an n-cycle, by:

σxij =

{
xσ(i)σ(j) if σ(i) < σ(j),

−xσ(j)σ(i) otherwise,
(2.5)

and multiplicative extension of it to monomial M .

The algebra is closed under Dn as the defining ideal is stable under Dn. Regarding the
action defined in (2.4), we need to check the following items.

(1) Well-defined:

M + I = M ′ + I → M −M ′ ∈ I → σ(M −M ′) ∈ I (as I is stable under Dn).
Then σM − σM ′ ∈ I → σM + I = σM ′ + I → σ(M + I) = σ(M ′ + I).

(2) Identity axiom: ϵ(f(xi1j1 , · · · , xikjk) + I) = f(xi1j1 , · · · , xikjk) + I,

(3) Compatibility axiom:

(σ1σ2)(f(xi1j1 , · · · , xikjk) + I) =f((σ1σ2)xi1j1 , · · · , (σ1σ2)xikjk) + I

=f(x(σ1σ2)i1(σ1σ2)j1 , · · · , x(σ1σ2)ik(σ1σ2)jk) + I

=f(xσ1(σ2i1)σ1(σ2j1), · · · , xσ1(σ2ik)σ1(σ2jk) + I

=σ1f(xσ2i1σ2j1 , · · · , xσ2ikσ2jk) + I

=σ1(σ2f(xi1j1 , · · · , xikjk)) + I.

Hence the map in (2.4), defines an action on FKCn(n).
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2.4. Representation decomposition of FKCn(n).

• Usual degree decomposition: The action of Dn on FKCn(n) defined in (2.4)
permutes the indexes among themselves but does not change the number of vari-
ables in a monomial. Therefore usual degree remains invariant under Dn. There-
fore, the usual degree representation decomposition makes sense for FKCn(n) (i.e.,
Dn respects decomposition in usual degree).

FKCn(n) =
⊕
d≥0

FK
(d)

Cn
(n). (2.6)

• Conjugacy class decomposition: Sn-degree is well defined on FKCn(n), since
the generators of the defining ideal in (2.2) are homogeneous with respect to Sn.
The action of Dn on FKCn(n) defined in (2.4) does not change the cycle type of
the Sn-degrees assigned to elements of FKCn(n). The reason is that a monomial
of degree σ, when acted upon by a permutation ν, is sent to a monomial of degree
ν−1σν which is a conjugate of σ by definition of conjugacy. So permutation ν
sends σ to a conjugate of σ, i.e., conjugacy class is invariant under Dn realized in
permutation group. Hence the conjugacy class decomposition is a representation
decomposition:

FKCn(n) =
⊕
µ

FK
µ

Cn
(n), (2.7)

where FK
µ

Cn
(n) stands for all the elements of Sn-degree σ in FKCn(n) that belong

to the conjugacy class indexed by µ.

Remark 2.3. Every permutation σ can be expressed using only transpositions
(1, 2), (2, 3), · · · (n − 1, n). As a result, has the potential to be non-zero for any
permutation σ. However, in our special cases (as discussed in sections 3.1 and 3.3),
we observe that for many permutations, FK

σ

Cn
(n) evaluates to zero. Having an Sn-

conjugacy class does not necessarily imply that it is also a Dn-conjugacy class. For
instance, consider the transpositions (2, 3) and (2, 5) within the same Sn-conjugacy
class (for n>5). These transpositions are not conjugated via an element in Dn.
However, in section 2.6, we will explore a very special basis (2.15). From this
basis, we find that any two elements in an Sn conjugacy class can be conjugated
via a rotation or reflection in Dn realized in permutation group. Consequently,
an Sn conjugacy class is also a Dn conjugacy class. Due to the reasons mentioned
above, we cannot further refine (2.7).

• Set-partition type decomposition:
a) Set-partition degree and Homogeneous Generators: Set-partition degree is well-
defined on FKCn(n), since the generators of the defining ideal in (2.2) exhibit ho-
mogeneity with respect to set-partition degree. For any monomial M in FKCn(n),
the appearance of xij implies that indices i and j belong to the same part of the
set-partition degree.
b) Action of Dn on Monomials: Consider an xij appearing in M . Under the ac-
tion of σ ∈ Dn (as definition in (2.5)) it transforms to xσ(i)σ(j) if σ(i) < σ(j),
and to −xσ(j)σ(i) otherwise. As a result of the action, the indexes σ(i) and σ(j)
now belong to the same part of the set-partition degree. While the action of Dn

rearranges indices within a part, it does not alter the number of indices in that
part. In other words, the set-partition type remains invariant under the action of
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Dn realized in the permutation group. We can express FKCn(n) as a direct sum
over set-partition types:

FKCn(n) =
⊕
ϕ

FK
ϕ

Cn
(n), (2.8)

where FK
ϕ

Cn
(n) represents all elements of set-partition degree λ belonging to the

same set-partition type indexed by ϕ.

Remark 2.4. Unlike permutations (as discussed in Remark 2.3), not every set-partition
can be obtained by joining only consecutive entries modulo n. For example, it is not possi-
ble to obtain the set-partition {{1, 3}, {2}, {4}}. Consecutively, for certain set-partitions
denoted as A, the space FK

A

Cn
(n) evaluates to zero. Later in section 2.6, we will explore

our very special basis (2.15) for which, for any two non-zero FK
A

Cn
(n) and FK

B

Cn
(n),

where A and B have same partition type, we can find an element of Dn that maps A into
B. Consequently, a class of the same set-partition type can be a Dn conjugacy class. Due
to the reasons mentioned above, we cannot refine (2.8).

2.5. Gröbner basis.

• Degree-2 terms: From the non-commutative Buchberger theory [11], the set of
generators of the defining ideal of FKCn(n) in (2.2) establish the degree 2 elements
of the Gröbner basis.

• Degree-3 terms: To find the degree-3 terms, we need to reduce the S-polynomials
between any two pairs of degree-2 terms with respect to lower degree terms.

We observe that the S-polynomial between two monomials is always zero. More-
over, the only S-polynomials that reduce to non-zero elements for Gröbner basis
are:

(1) S(xm,m+1x1n − x1nxm,m+1, x1nx12, 3), and

(2) S(x1,nx12, xm,m+1xl,l+1 − xl,l+1xm,m+1, 3).

Item 1 reduces to:

A = {x1nxm,m+1x12, 3 ≤ m ≤ n− 2},

The range of m is due to the fact that if m is less than or equal to 2, it would be
divisible by the relation xm+1,m+2xm,m+1 = 0, (for 1 ≤ m ≤ n− 2) when m = 1.

Item 2 reduces to:

B = {x1nxl,l+1x12, 3 ≤ l ≤ n− 2}.

The range of l ensures that x1nxl,l+1x12 is not divisible by the relation x1nxn−1,n =
0.

Interestingly, sets A and B are the same. Since the set of degree-3 elements in
relations of FKCn(n) is empty, the following set constitutes the entire degree-3
Gröbner basis:

degree-3 terms : {x1nxm,m+1x12 : 3 ≤ m ≤ n− 2}. (2.9)
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Example 2.5. For n = 4, there are no degree-3 terms.
For n = 5, the only degree-3 term in the Gröbner basis is x15x34x12.
For n = 6, there are two degree-3 terms: x16x34x12 and x16x45x12.

• Degree-4 terms: To find degree-4 terms, we only need to consider one S-
polynomial (since the rest vanish):

S(xm2,m2+1x1n − x1nxm2,m2+1, x1nxm1,m1+1x12, 4).

This S-polynomial, with respect to terms of degree less than 4, reduces to:

x1nxm2,m2+1xm1,m1+1x12,

However, these terms reduce to zero unless the following inequalities hold:

m2 −m1 ≥ 2, m1 ≥ 3, m2 ≤ n− 2.

The terms x1nxm2,m2+1xm1,m1+1x12 constitute the only degree-4 terms, as the set
of elements of degree 4 in the relations of FKCn(n) is empty. Therefore, we have:

Degree-4 terms : {x1nxm2,m2+1xm1,m1+1x12 : m2 −m1 ≥ 2, m1 ≥ 3 and m2 ≤ n− 2}.
(2.10)

The terms of degrees 3 and 4 in Equations (2.9) and (2.10) provide insights into a general
form for the elements of degree k ≥ 4 in the basis of FKCn(n). Let’s explore this further
with the following proposition:

Proposition 2.6. For k ≥ 4, any degree-k element of Gröbner basis for the ideal associ-
ated with FKCn(n) is of the form:

x1nxmk−2mk−2+1xmk−3mk−3+1 · · ·xm2m2+1xm1m1+1x12, where,
mi −mi−1 ≥ 2, i = 2, 3, · · · , k − 2, and m1 ≥ 3 and mk−2 ≤ n− 2.

(2.11)

Proof. (by induction)

• Base of induction: Equation (2.10) for k = 4 serves as the base of induction.

• Inductive step: Assume that the statement is valid for degree-k elements of the
Gröbner basis. We need to show that it is valid for degree-(k + 1) elements.
Specifically, we want to prove that for degree-(k + 1) elements, we have:
x1nxmk−1mk−1+1xmk−2mk−2+1xmk−3mk−3+1 · · ·xm2m2+1xm1m1+1x12, where
mi −mi−1 ≥ 2, i = 2, 3, · · · , k − 1, and m1 ≥ 3 and mk−1 ≤ n− 2.

(2.12)

However, the only S-polynomials available between a degree-k element in the
statement and a lower degree term, which could reduce to a degree-(k+1) element
of the Gröbner basis is (as the rest vanish), are given by:

S(xmk−1mk−1+1x1n − x1nxm,m+1, x1nxmk−2mk−2+1xmk−3mk−3+1 · · ·xm1m1+1x12, k + 1)

= x1nxmk−1mk−1+1xmk−2mk−2+1 · · ·xm1m1+1x12.

(2.13)

We now focus on the underlined product on the right hand side of (2.13):

C = xmk−1,mk−1+1xmk−2,mk−2+1.

To ensure that C does not vanish or reduce to something else when reduced with
any of the degree-2 terms in (2.1), we need to avoid the following cases.

(1) If mk−1 = mk−2 then C → 0 due to the relation x2
m,m+1 = 0.



8

(2) If mk−1 = mk−2 − 1, then C → 0 due to the relation xm,m+1xm+1,m+2 = 0.

(3) If mk−1 ≤ mk−2 − 2, then C → xmk−2mk−2+1xmk−1mk−1+1 (by reduction with
the leading term of the relation xm,m+1xl,l+1 − xl,l+1xm,m+1 = 0)

(4) If mk−1 ≤ mk−2 + 1, then C → 0 by the relation xm+1,m+2xm,m+1 = 0.

To avoid these cases, we require the inequality n − 2 ≥ mk−1 > mk−2 + 1, which
is equivalent to mk−1 −mk−2 ≥ 2. Additionally, we need m1 ≥ 3 to ensure that
xm1,mm1+1x12 does not become zero due to xm+1,m+2xm,m+1 = 0 for 1 ≤ m ≤ n− 2.

Therefore the following three inequalities meet the requirement of (2.12) for va-
lidity at degree k + 1:

mk−1 −mk−2 ≥ 2, n− 2 ≥ mk−1, and m1 ≥ 3.

This completes the proof. □

By combining the degree-k terms for k ≥ 4 from (2.11), the degree-3 term from (2.9)
and the degree-2 terms from (2.1), we obtain the Gröbner basis GBFKCn (n)

for the ideal
associated with FKCn(n):

GBFKCn (n)
={x2

m,m+1 : 1 ≤ m ≤ n− 1; x2
1,n,

xm,m+1xm+1,m+2, xm+1,m+2xm,m+1, 1 ≤ m ≤ n− 2

xn−1,nx1n, x1nxn−1,n, x12x1n, x1nx12

xm,m+1xl,l+1 − xl,l+1xm,m+1, 1 ≤ m ≤ l − 2, 3 ≤ l ≤ n− 1

xm,m+1x1,n − x1nxm,m+1, 2 ≤ m ≤ n− 2,

x1nxm,m+1x12, 3 ≤ m ≤ n− 2, and
x1nxmk−2mk−2+1xmk−3mk−3+1 · · ·xm2m2+1xm1m1+1x12,

where mi −mi−1 ≥ 2, i = 2, 3, · · · , k − 1, and m1 ≥ 3 and mk−1 ≤ n− 2}.
(2.14)

Example 2.7. For n = 3 we have
GBFKC3

(3) = {x2
12, x

2
23, x

2
13, x12x23, x23x13, x12x13, x23x12, x13x23, x13x12}.

2.6. Basis and dimension.

Definition 2.8. (1) A matching in a graph is a subset of the set of edges in the graph
where no two edges share a common vertex.

(2) A matching on a set of line segments Vn = {12, 23, · · ·n− 1, n} is a subset of Vn

where no two line segments have a common vertex.

Example 2.9. Consider a square with successive sides/edges labelled as a, b, c, and d. We
have 7 sets of sides/edges where no two of them share a common vertex:

ϕ, {a}, {b}, {c}, {d}, {a, c}, {b, d}.
Therefore, the number of matchings in a square is 7.

a

b

c

d
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Theorem 2.10. (1) There exists a one-to-one correspondence between the basis of
FKCn(n) and the set of matchings in an n-cycle Cn.

(2) The dimensions of FKCn(n) equals the number of matchings in an n-cycle Cn.

Proof. The basis of the algebra FKCn(n) consists of all the words formed from generators
{x12, x23, x34, · · · , xn−1,n;x1,n} that are not divisible by any leading term of the elements
in the Gröbner basis from (2.14). Specifically:

• The element of degree 0 is 1,

• The elements of degree 1 are the generators x1n and xm,m+1, for m = 1, · · · , n− 1.

However, for higher degree terms in FKCn(n), the structure of the degree-2 terms and
higher degree terms in the Gröbner basis from (2.14) leads to the following observations:

(1) Any monomial formed from our generators vanish due to the degree-2 terms in
the Gröbner basis if it has two adjacent 1st indices differing by ±1 or 0.

(2) Any monomial formed from our generators vanishes if two adjacent 1st indices
differ by more than or equal to 2 but are increasing in 1st indices.

(3) If any two adjacent 2nd indices in a monomial share the common value n, then
the monomial vanishes by xn−1,nx1n.

(4) If any two adjacent 2nd indexes share a common value less than n, then since all
the generators are of the form xm,m+1, they also share a common 1st index, leading
to vanishing by xijxij.

To avoid the above 4 cases, the basis elements of FKCn(n) must consist of monomials
in variables with decreasing 1st indices (with the exception of x1n when appears as the
leading variable), such that any two successive 1st indices differ by at least 2.

Considering the above points we come up with B(FKCn(n)), the basis of FKCn(n):

B(FKCn(n)) = {1, x1n, xm,m+1, where 1 ≤ m ≤ n− 1,

x1nxm1m1+1, where 2 ≤ m1 ≤ n− 2,

xm1m1+1xm2m2+1, where m1 −m2 ≥ 2, m2 ≥ 1, m1 ≤ n− 1,

xm1m1+1xm2m2+1 · · ·xmkmk+1, where mi −mi+1 ≥ 2, mk ≥ 1, m1 ≤ n− 1,

x1nxm1m1+1xm2m2+1 · · ·xmk−1mk−1+1, where mi −mi+1 ≥ 2, mk−1 ≥ 2,

m1 ≤ n− 2}.

(2.15)

Consider the algebra FKCn(n) and its basis B[FKCn(n)], we want to show that this basis
consists of all the matchings in the n-cycle graph Cn.

(1) Viewing Variables as Edges:

In the basis of FKCn(n) given in (2.15), let’s interpret the variables xm,m+1 for
m = 1, 2, · · · , n − 1 and x1n, as representing the edges 12, 23, · · ·n− 1, n and 1n
of the n-cycle Cn. Each element in the basis corresponds to a subset of the edges
of Cn.

(2) Matching Interpretation: An element in the basis of FKCn(n) can be viewed
as a matching in the graph Cn. The reason is that no monomial in the basis
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includes two variables with a common index. Therefore, we can view an element
of the basis as a subset of the set of Cn edges with no common vertex. Hence, an
element of the basis corresponds to a subset of the edges of Cn with no common
vertex, which is precisely the definition of a matching.

(3) Converse Interpretation: Conversely, any matching in Cn can be represented
as an element in the basis of FKCn(n). Furthermore, considering the domain of
the indexes in (2.15), we see that all the monomials in the generators of FKCn(n)
that have no repeated indices are covered in the basis.

(4) one-to-one correspondence, and the dimension of FKCn(n): The above
considerations establish a one-to-one correspondence between the set of all match-
ings in the n-cycle Cn and the basis of FKCn(n). Therefore the dimension of
algebra FKCn(n) is equal to the number of matching in the n-cycle Cn.

This completes the proof. □

Corollary 2.11. The dimension of FKCn(n) is equal to the Lucas number Ln.

Proof. From Theorem 2.10 we know that the dimensions of FKCn(n) correspond to the
number of matchings in an n-cycle Cn, which precisely equals the Lucas number Ln [13].
This completes the proof. □

2.7. The highest degree elements in the basis. Consider the basis of FKCn(n) as
given in (2.15). We want to find the maximum degree of a monomial in the basis, which
corresponds to the maximum size of a matching. This maximum degree occurs when
any two adjacent 1st indices differ by exactly 2 (equivalently, when any two sides in the
corresponding matching are separated by exactly one side in Cn).

We can calculate this maximum degree as follows:

For n ≥ 4, the maximum degree/size = ⌊n
2
⌋,

The multiplicity of the maximum degree/size =

{
2, for even n

n, for odd n

(2.16)

Example 2.12. For n = 5, the highest degree for elements in B[FK(5)] is ⌊n
2
⌋ = ⌊5

2
⌋ = 2,

and its multiplicity 5.

2.8. ‘Matchings’ and Fibonacci number. The following Lemma establishes the con-
nection of Fibonacci number to the number of matching in a set of line segments.

Lemma 2.13. Let M(n) denote the number of matchings in the set of line segments
Vn = {12, 23, · · ·n− 1, n}, n ≥ 2. Then

M(n) = Fn, n ≥ 2, (2.17)

where Fn is n-th Fibonacci number with initial values F0 = 1, F1 = 1.

Proof. We need to show that:

(1) M(2) = F2, and
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(2) M(n+1) = M(n) +M(n− 1), i.e., the recurrence relation for Fibonacci numbers
[4, 5].

(1) Base Case: For n = 2 the set V2 = {12} contains two subsets: the empty set ϕ,
and itself {12}. Thus M(2) = 2, which matches the Fibonacci number F (2) = 2
(with initial values F0 = 1 and F1 = 1).

(2) Inductive Step: Consider Vn as a union:

Vn = {n− 1, n} ∪ Vn−1, where Vn−1 = {12, 23, · · ·n− 2, n− 1}.

Adding a line segment n, n+ 1 to Vn creates the set Vn+1. This addition increases
M(n), the number of matchings in Vn, by introducing new matchings. To avoid
common vertices, we add n, n+ 1 only to each matching in Vn−1. Note that
n, n+ 1 shares no common vertex with elements in Vn−1 but does share a common
vertex n with n− 1, n. Therefore the number of new matchings added to M(n)
is precisely the number of matchings in Vn−1, which is M(n − 1). Thus we have
M(n+ 1) = M(n) +M(n− 1). This completes the proof.

□

Lemma 2.14. Let M(n, k) denote the number of matchings of size k in the set of line
segments Vn = {12, 23, · · ·n− 1, n}. Then

(1) M(n+ 1, k) = M(n, k) +M(n− 1, k − 1), for n ≥ 2, k ≥ 0,

(2) M(n, k) =
(
n−k
k

)
.

Proof. (1) Consider Vn as

Vn = Vn−1 ∪ {n− 1, n},

where Vn−1 = {12, 23, · · ·n− 2, n− 1}. Addition of the line segment n, n+ 1 to
Vn makes

Vn+1 = {n, n+ 1} ∪ Vn−1 ∪ {n− 1, n}.
This addition increases M(n, k). To avoid common vertices, we add n, n+ 1, as
before, only to each matching in Vn−1. The reason is that n, n+ 1 does not share
a common vertex with elements in Vn−1 but have a common vertex n the elements
in {n, n+ 1} and {n− 1, n}. So the number of the new matchings is exactly the
number of elements in Vn−1 of size k − 1, i.e., M(n− 1, k − 1). Hence we have:

M(n+ 1, k) = M(n, k) +M(n− 1, k − 1).

(2) To prove M(n, k) =
(
n−k
k

)
we use double induction. We need to show that

(a) Base Case: For n = 2 and k = 1 the statement M(2, 1) =
(
2−1
1

)
is true, as

M(2, 1) = 1 and
(
2−1
1

)
=
(
1
1

)
= 1.

(b) Inductive Step: We need to show that

If M(n, k) =

(
n− k

k

)
∀n ≥ 2, k > 1, then M(n+ 1, k) =

(
n+ 1− k

k

)
,

and

If M(n, k) =

(
n− k

k

)
∀n ≥ 2, k > 1, then M(n, k + 1) =

(
n− (k + 1)

k + 1

)
.
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By part (1) of the Lemma we have:

M(n+ 1, k) = M(n, k) +M(n− 1, k − 1)

=

(
n− k

k

)
+

(
n− 1− (k − 1)

k − 1

)
=

(
n− k

k

)
+

(
n− k

k − 1

)
=

(n− k)!

k!(n− 2k)!
+

(n− k)!

(k − 1)!(n− 2k + 1)!
= · · · = (n− k + 1)!

k!(n− 2k + 1)!

=

(
n+ 1− k

k

)
.

Also,
M(n, k + 1) = M(n− 1, k + 1) +M(n− 2, k)

=

(
n− 1− (k + 1)

k + 1

)
+

(
n− 2− k

k

)
=

(
n− k − 2

k + 1

)
+

(
n− k − 2

k

)
=

(n− k − 2)!

(k + 1)!(n− 2k − 3)!
+

(n− k − 2)!

k!(n− 2k − 2)!
= · · · = (n− k − 1)!

(k + 1)!(n− 2k − 21)!

=

(
n− k − 1

k + 1

)
=

(
n− (k + 1)

k + 1

)
.

This completes the proof. □

The following proposition establishes the connection of the number of matchings in a set
of line segments with that of an n-cycle graph Cn.

Proposition 2.15. . Consider an n-cycle graph denoted Cn. Let MCn(n, k) represent the
number of matchings of size k in Cn. Additionally, let M(n, k) be the number of matchings
of size k in the set of line segments Vn = {12, 23, · · ·n− 1, n}. Then we have:

MCn(n, k) =M(n, k) +M(n− 2, k − 1), n ≥ 4, k = 2, 3, · · · , ⌊n
2
⌋, and

MCn(n, k) =
n

n− k

(
n− k

k

)
,

(2.18)

Proof. M(n, k) could be viewed as the number of matchings of size k in Cn \ {1n}. We
rewrite Cn \ {1n} as

Cn \ {1n} = {12} ∪ Vn−2 ∪ {n− 1, n},

where Vn−2 = {23, 34, · · · , n− 2, n− 1}. Now adding 1n to Cn \ {1n} completes the
n-cycle, as well increases M(n, k) to MCn(n, k) by making new matchings of size k. As
before, to avoid common vertices we need to add the edge 1n to the elements of size k− 1
only in Vn−2.

Therefore, the number of the new matchings equals the number of matchings of size k−1
in Vn−2, that is, M(n− 2, k− 1). Hence, we have MCn(n, k) = M(n, k)+M(n− 2, k− 1).
This completes the proof of the first part.
To prove the second part, we substitute M(n, k) =

(
n−k
k

)
from Lemma 2.14 into the first
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part, as follows.

MCn(n, k) = M(n, k) +M(n− 2, k − 1) =

(
n− k

k

)
+

(
n− 1− k

k − 1

)
=

(
n− k

k

)
+

(n− 1− k)!

(k − 1)!(n− 2k)!
=

(
n− k

k

)
+

(n−k)!
(n−k)

k!
k
(n− 2k)!

=

(
n− k

k

)
+

k

n− k

(n− k)!

k!(n− 2k)!
=

(
n− k

k

)
+

k

n− k

(
n− k

k

)
=

n

n− k

(
n− k

k

)
.

(2.19)

This completes the proof. □

2.9. Hilbert series and q-Fibonacci/q-Lucas polynomials. [4], [5]. Putting together
Proposition 2.15, Theorem 2.10, Corollary 2.11, and equation (2.16), we obtain:

Ln = MCn(n) =

⌊n
2
⌋∑

k=0

MCn(n, k) =

⌊n
2
⌋∑

k=0

n

n− k

(
n− k

k

)
.

The upper limit in the sum is due to the fact that maximum size of a matching in Cn or
the maximum degree of an element in the basis of FKCn(n) is ⌊n

2
⌋.

Hence taking sum over all the matchings of different size k in Cn (elements of different
degrees k in the basis, we have q-Lucas polynomial [4, 5]:

Ln(q) =

⌊n
2
⌋∑

k=0

n

n− k

(
n− k

k

)
qk, L0 = 2. (2.20)

From Lemmas 2.13 and 2.14 we have the total number of matchings in a set of line
segments Vn = {12, 23, · · ·n− 1, n} to be Mn = Fn and the number of matchings of size
k in Vn to be M(n, k) =

(
n−k
k

)
. This results in

Fn = M(n) =

⌊n
2
⌋∑

k=0

M(n, k) =

⌊n
2
⌋∑

k=0

(
n− k

k

)
.

Hence taking sum over all matchings of different sizes we have q-Fibonacci polynomial [4,
5]:

Fn(q) =

⌊n
2
⌋∑

k=0

(
n− k

k

)
qk. (2.21)

Considering the information above, we can establish a connection between the q-Lucas
polynomial and the Hilbert series of FKCn(n) in the following proposition:

Proposition 2.16. The Hilbert series of FKCn(n) is given by the q-Lucas number Ln(q):

Hn(q) = Ln(q). (2.22)

Proof. Recall the expression for the q-Lucas number from Equation (2.20):

Ln(q) =

⌊n
2
⌋∑

k=0

n

n− k

(
n− k

k

)
qk, L0 = 2.
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In the above expression, the degree k, representing the size of the matching, is summed
over to yield the Lucas number. By Corollary 2.11, this Lucas number is equal to the
dimension of FKCn(n). Thus, the expression demonstrates that the Hilbert series is
indeed given by Lucas q-number:

Hn(q) =

⌊n
2
⌋∑

k=0

n

n− k

(
n− k

k

)
qk = Ln(q).

This completes the proof. □

Example 2.17. H5(q) =
∑⌊ 5

2
⌋

k=0
5

5−k

(
5−k
k

)
qk = 1+5q+5q2. Similarly H6 = 1+6q+9q2+2q3.

2.10. The action of Dn and decomposition. In this section we derive the character
of FKCn(n) over Dn for even and odd n.

Remark 2.18. As previously mentioned, Dn defines an action on the algebra FKCn(n).
Under this action, the component of the character of FKCn(n) associated with the con-
jugacy class indexed by σ ∈ Dn is the sum of the coefficients of z in σ(z) when z runs
through the basis B[FKCn(n)].

Lemma 2.19. Let r ∈ Dn realized in permutation group Sn as r = (1, 2, · · · , n). Then
the trace of the representation of rp ∈ Dn, on FKCn(n) is given by:

[χ(rp)](q) =



1 if p = 1

1 +

gcd(n, p)q
n

gcd(n,p) , if 2 ≤ p ≤ n− 1, and gcd(n, p) ≥

{
2, n = even
3, n = odd

0 otherwise
Hn(q),Hilbert series, if p = n

(2.23)

Proof. In the following discussion, we consider M both as a basis element of FKCn(n) and
as a matching in Cn. Similarly we treat r alternatively as a clockwise rotation of angle
2π
n

in Cn or as an operator acting on M as an eigenvector in rpM = M with eigenvalue 1.

We consider the following points.

(1) For any integer 1 ≤ p ≤ n, there always exists an empty matching (equivalently,
the identity element M = 1 in the basis), such that rpM = M .

(2) rM = M does not hold for non-empty M . The reason is that since r represents
a clockwise rotation of 2π

n
in Cn, it takes an edge in the matching M to the

neighbouring edge in Cn. However this neighbouring edge is not part of M , as it
could violate the definition of a matching (which forbids common vertices). Thus,
rM = M cannot hold for a non-empty matching M (or any basis element M ̸= 1).
In other word, rpM = M is ruled out for p = 1 and non-empty matchings.

(3) The possibility of rpM = −M is absurd. If we consider xm,m+1 as a general
variable in a basis element M , where 1 ≤ m < n, then for 1 < p ≤ n − 1 (since
p = 1 is ruled out), we have:

rpxm,m+1 = x(m+p)(mod n),(m+1+p)(mod n).

We focus on the indices of x(m+p)(mod n),(m+1+p)(mod n) and examine the following
possibilities:
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• (m+ p)(mod n) ≤ n− 1, then (m+ 1 + p)(mod n) ≤ n. Then

rpxm,m+1 = x(m+p)(mod n),(m+1+p)(mod n)) = xm′,m′+1

where m′ = (m+ p)(mod n) ≤ n− 1.
No negative sign develops in this case. Therefore we are left with the following
case:

• (m+ p)(mod n) = n, then (m+ 1 + p)(mod n) = 1. We have:

rpxm,m+1 = x(m+p)(mod n),(m+1+p)(mod n)) = xn,1 = −x1,n.

Here, a minus sign does develop. However, for rpM = −M to hold, we
would require that rpx1,n = xm′,m′+1 for some m′ (to compensate for the x1n

generated by the operation of rp on M). But then

rpx1,n = x1+p,(n+p)(mod n) = x1+p,p = −xp,p+1.

Here, a second minus sign cancels out the first one. Therefore rpM = −M is
absurd. This is why gcd(n, p) was mentioned in the statement of the Lemma,
as the number of eigenvectors M .

(4) The second item above rules out p = 1 in the equation rpM = M for nonempty
matching M .
For rpM = M to hold, we require that the matching M be periodic with period p.
In fact, a matching can be periodic with period gcd(n, p) and still be fixed by rp.
Specifically, a matching M in Cn, after a clockwise rotation of gcd(n, p), coincides
itself. Therefore the number of edges in M is n

gcd(n,p)
, and the number of such

matchings M equals gcd(n, p). Alternatively, we can express this as the number
of non-identity elements in the basis of degree n

gcd(n,p)
, that are fixed by rp, which

equals gcd(n, p). Thus, we can write the character as gcd(n, p)q
n

gcd(n,p) , where, we
also include the identity element(empty matching) that is always fixed.

However, (2.16), imposes a restriction on the highest degree:
n

gcd(n, p)
≤ ⌊n

2
⌋

or equivalently: {
gcd(n, p) ≥ 2, for even n

gcd(n, p) ≥ 2n
n−1

, for odd n

Since 2n
n−1

> 2 for finite n, and gcd(n, p) is a natural number, we have 2n
n−1

≥ 3.
Therefore, the above restriction is modified as follows:{

gcd(n, p) ≥ 2, for even n

gcd(n, p) ≥ 3, for odd n

putting everything together, we obtain the following expression for the character:

χ(rp) = 1 +

gcd(n, p)q
n

gcd(n,p) , if 2 ≤ p ≤ n− 1, and gcd(n, p) ≥

{
2, n = even
3, n = odd

0 otherwise
(2.24)
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(5) For p = n, where rp = rn = ϵ, represents the identity element of Dn, we have
χ(rn = ϵ) = dim[FKCn(n)] = Ln by corollary 2.11. Alternatively, in the degree
decomposition q-Lucas form, we express Ln(q) = Hn(q), which corresponds to the
Hilbert series of FKCn(n) according to Proposition 2.16. Therefore, the character
of identity element of the group over the quotient algebra would be:

χ(rn = ϵ) = Ln(q) = Hn(q) (2.25)

The combination of the above items 1−5, along with Equations (2.24) and (2.25) provides
the proof of the lemma. □

Example 2.20. Consider FKC6(6). Then

B[FKCn(n)] = {1, x12, x23, x34, x45, x56, x16,

x34x12, x45x12, x45x23, x56x12, x56x23, x56x34, x16x23, x16x34, x16x45,

x16x45x23, x56x34x12}

Then, for 2 ≤ p ≤ 5, such that 6
gcd(6,p)

≤ ⌊6
2
⌋ , i.e. gcd(6, p) ≥ 2, we will have the options

p = 2, 3, 4. Therefore we will have:

• χ(r) = 1

• χ(r2) = 3 or χ(r2)(q) = 1 + 2q3,

• χ(r3) = 4 or χ(r3)(q) = 1 + 3q2,

• χ(r4) = 3 or χ(r4)(q) = 1 + 2q3,

• χ(r5) = 1

• χ(r6 = ϵ) = 18 or χ(r6)(q) = L6(q) = H6(q) = 1 + 6q + 9q2 + 2q3.

Lemma 2.21. For even n ≥ 4, let s ∈ Dn, be realized in permutation group as
s = (1n)(2, n − 1) · · · (n

2
, n
2
+ 1) in an n-cycle graph Cn. Let χ(s) be the trace of the

representation of s over FKCn(n). Then we have:

[χ(s)](q) =

⌊n
4
⌋∑

k=0

(
n
2
− k

k

)
q2k−2

⌊
n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
q2k+1+

⌊
n
2 −2

2
⌋∑

k=0

(
n
2
− 2− k

k

)
q2k+2. (2.26)

In terms of q-Fibonacci polynomials, according to the total degree decomposition we have:

[χ(s)](q) = Fn
2
(q2)− 2qFn

2
−1(q

2) + q2Fn
2
−2(q

2), (2.27)

where F represents the appropriate q-Fibonacci polynomial.

Proof. • By Theorem 2.10 to any element of the basis of FKCn(n) there corresponds
a matching in Cn. Let T1 = {i1, i1 + 1, i2, i2 + 1 · · · im, im + 1} be a matching of
the set of line segments S1 = {12, 23, · · · , n

2
− 1, n

2
} in Cn as defined in Definition

2.8. It has a corresponding monomial:

u = xi1,i1+1xi2,i2+1 · · · xim,im+1 ∈ B[FKCn(n)].
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Now consider the reflection in s of the matching T1 ( and its corresponding mono-
mial u), Since n is even, this reflection is itself a matching. let’s denote it as:

T ′
1 = {j1, j1 + 1, j2, j2 + 1 · · · jm, jm + 1}.

Also denote its corresponding monomial as:

u′ = xj1j1+1xj2j2+1 · · ·xjmjm+1.

While the matching T1 is not symmetric about s, the union of the matchings T1∪T ′
1

is symmetric, and its corresponding monomial uu′ ∈ B[FKCn(n)] is invariant
under s. This can be seen as follows:

s(uu′) = s(usu) = (su)s2u = (su)u = u′u
reduction w.r.t degree-2 terms−−−−−−−−−−−−−−−−−→ uu′.

The last step in the above equation involves reduction with respect to degree-2
terms in the Gröbner basis (2.14), since u and u′ commute (there are no common
indices among variables in uu′). The number of such eigenvectors in FKCn(n)
equals the number of matchings T1 ∪ T ′

1 in Cn. By construction, this is equivalent
to the number of matchings T1 in the set {12, 23, · · · , n

2
− 1, n

2
}. Using Equations

(2.17) and (2.21) we find that this number is equal to:

[M(
n

2
)](q) = Fn

2
(q) =

⌊n
4
⌋∑

k=0

(
n
2
− k

k

)
qk. (2.28)

However, each matching in T1 ∪ T ′
1 contains twice as many edges as T1 does.

Therefore, our first contribution to χ(s), denoted as χ1(s) is given by:

[χ1(s)](q) =

⌊n
4
⌋∑

k=0

(
n
2
− k

k

)
q2k = Fn

2
(q2). (2.29)

Next, to fine the number of eigenvectors with eigenvalue −1 we consider the fol-
lowing cases:

(1) We consider the matching {1n} ∪ T2, where T2 ⊂ {23, · · · , n
2
− 1, n

2
}. We

denote the reflection of T2 in s as T ′
2. we also consider v and v′ as the

corresponding monomials in B[FKCn(n)], for T2 and T ′
2, respectively.

(2) We consider the matching {n
2
, n
2
+ 1}∪T3 where T3 is a matching in {12, · · · , n

2
− 2, n

2
− 1}.

We also consider its reflection T ′
3 in s.

In case 1, while the matching {1n} ∪ T2 is not symmetric about s, the union
{1n}∪T2∪T ′

2 forms a matching in Cn that is symmetric about s. The corresponding
monomial x1nvv

′ forms an eigenvector of s with eigenvalue −1, because:

s(x1nvv
′) = −x1ns(vv

′) = −x1nvv
′.

By construction, the number of matchings {1n}∪T2∪T ′
2 in Cn equals the number

of matchings T2 in {23, · · · , n
2
− 1, n

2
}, which according to (2.17) and (2.21) is equal

to:

[M(
n

2
− 1)](q) = Fn

2
−1(q) =

⌊
n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
qk. (2.30)

However, while the number of matchings T2 equals that of {1n}∪T2 ∪T ′
2, but the

number of edges in each matching of {1n}∪T2 ∪T ′
2 is 2k+1 compared to k edges
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of T2. The odd number 2k+1, reflects the odd size of the matching {1n}∪T2∪T ′
2

in Cn, as well the negative eigenvalue of s. Therefore we have:

−
⌊

n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
q2k+1 = −qFn

2
−1(q

2).

where the rearrangement of q on the right hand side of the equation is for the
sake of consistency with to definition of q-Fibonacci. Also the negative sign in
the above is due the negative eigenvalue of s. Having this for the case (1), and
considering the fact that the case (2) also gives exactly the same result as case (1),
we apply a factor 2 for the above and hence we come up with a second contribution
to χ(s):

[χ2(s)](q) = −2

⌊
n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
q2k+1 = −2qFn

2
−1(q

2). (2.31)

• To cover the last contribution to χ(s), we consider the matching

{1n} ∪ {n
2
,
n

2
+ 1} ∪ T4 ∪ T ′

4.

Here T4 is a matching in {23, 34, · · · , n
2
− 2, n

2
− 1} (to avoid developing common

vertex with 1n or n
2
, n
2
+ 1 ) and T ′

4 its reflection in s. We also consider w and w′,
which are the corresponding monomials to T4 and T ′

4, respectively.
By similar arguments as before, we have eigenvectors with eigenvalues +1. The
number of such eigenvectors equals the number of matchings T4 ⊂ {23, 34, · · · , n

2
− 2, n

2
− 1}

which is given by Equations (2.17) and (2.21):

[M(
n

2
− 2)](q) = Fn

2
−2(q) =

⌊
n
2 −2

2
⌋∑

k=0

(
n
2
− 2− k

k

)
qk. (2.32)

However, while the number of matchings T4 equals that of {1n}∪{n
2
, n
2
+1}∪T4∪T ′

4,
the number of edges in each matching of the latter is 2k + 2 compared to k edges
in T4.
Hence our last contribution to χ(s) is

[χ3(s)](q) =

⌊
n
2 −2

2
⌋∑

k=0

(
n
2
− 2− k

k

)
q2k+2 = q2Fn

2
−2(q

2). (2.33)

Now, adding up the contributions from Equations (2.29), (2.31) and (2.33) we arrive at:

[χ(s)](q) =

⌊n
4
⌋∑

k=0

(
n
2
− k

k

)
q2k − 2

⌊
n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
q2k+1 +

⌊
n
2 −2

2
⌋∑

k=0

(
n
2
− 2− k

k

)
q2k+2.

This expresion is written in the following q-Fibonacci form using (2.21):

[χ(s)](q) = Fn
2
(q2)− 2qFn

2
−1(q

2) + q2Fn
2
−2(q

2).

This completes the proof. □

Example 2.22. For n = 6 we have [χ(s)](q) = F3(q
2)− 2qF2(q

2) + q2F1(q
2).

Let q = 1, then χ(s) → F3 − 2F2 + F1 = 3− 2(2) + 1 = 0.
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Lemma 2.23. For even n, Let s, r ∈ Dn, be realized in permutation group Sn as
s = (1, n)(2, n− 1) · · · (n

2
, n
2
+ 1) and r = (1, 2, · · · , n), in an n-cycle graph Cn. Then we

have:

[χ(sr)](q) =

⌊
n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
q2k, n ≥ 4, (2.34)

and in q-Fibonacci form according to total degree decomposition, we have:

[χ(sr)](q) = Fn
2
−1(q

2), n ≥ 4, (2.35)

where χ(sr) is the trace of the representation of sr over FKCn(n).

Proof. Considering s and r as defined in the statement we will have:

sr = (1, n− 1)(2, n− 2) · · · (n
2
− 1,

n

2
+ 1).

Therefore the only matchings in the n-cycle Cn, symmetric about sr, are T ∪T ′, where T
is a matching in {12, 23, · · · , n

2
− 2, n

2
− 1} and T ′ its reflection in sr. The corresponding

monomials to T and T ′ are w and w′, respectively.

we have eigenvectors of sr with eigenvalue +1, as sr(ww′) = ww′ as before. The number
of such eigenvectors equals the number of matchings T ∪T ′ in Cn which equals the number
of matchings T in {12, 23, · · · , n

2
− 2, n

2
− 1} which is by (2.17) and (2.21) equal to:

[χ(sr)](q) = M(
n

2
− 1)(q) = Fn

2
−1(q) =

⌊
n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
qk.

However, while the number of matchings T ∪T ′ equals that of T , but the number of edges
in each matching T ∪ T ′ is 2k compared to the k edges of T . Therefore we have:

[χ(sr)](q) =

⌊
n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
q2k = Fn

2
−1(q

2).

This completes the proof. □

Example 2.24. For n = 6, we have χ(sr) =
∑1

k=0

(
2−k
k

)
q2k =

(
2
0

)
+
(
1
1

)
q = 1 + q2.

Lemma 2.25. For odd n, Let s ∈ Dn realized in permutation group Sn as
s = (1, n)(2, n− 1) · · · (n−1

2
, n+3

2
)(n+1

2
) in an n-cycle graph Cn. Then

[χ(s)](q) =

⌊n−1
4

⌋∑
k=0

(
n−1
2

− k

k

)
q2k −

⌊n−3
4

⌋∑
k=0

(
n−3
2

− k

k

)
q2k+1, (2.36)

with the q-Fibonacci version:

[χ(s)](q) = Fn−1
2
(q2)− qFn−3

2
(q2),

where χ(s) is the trace of the representation of s over FKCn(n).

Proof. • Consider a matching T1:

T1 = {i1, i1 + 1, i2, i2 + 1 · · · im, im + 1}
of the following set of line segments.

S = {12, 23, · · · , n− 1

2
− 1,

n− 1

2
}.
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where the corresponding monomial of S is:

u = xi1,i1+1xi2,i2+1 · · ·xim,im+1.

Let the reflection of T1 in s, itself a matching, be T ′
1:

T ′
1 = {j1, j1 + 1, j2, j2 + 1 · · · jm, jm + 1},

with its corresponding monomial:

u′ = xj1j1+1xj2j2+1 · · ·xjmjm+1.

Although the matching T1 is not symmetric about s, the matching T1 ∪ T ′
1 is

symmetric. The monomial uu′ associated with it forms an eigenvector of s with
eigenvalue +1, as shown previously: s(uu′) = uu′.

The number of such eigenvectors equals the number of the matchings T1 ∪ T ′
1 in

Cn which equals the number of matchings T1 in {12, 23, · · · , n−1
2

− 1, n−1
2
} which

is by (2.17) and (2.21) equal to:

[M(
n− 1

2
)](q) = Fn−1

2
(q) =

⌊n−1
4

⌋∑
k=0

(
n−1
2

− k

k

)
qk, (2.37)

While the number of matchings T ∪T ′ equals that of T , but the number of edges in
each matching T ∪T ′ is 2k compared to k edges in T . Hence our first contribution
to χ(s) is

[χ1(s)](q) =

⌊n−1
4

⌋∑
k=0

(
n−1
2

− k

k

)
q2k = Fn−1

2
(q2). (2.38)

• We also have another set of matchings symmetric about s. These matchings are
formed by adding the edge 1n (corresponding variable x1n), to avoid common
vertex with 1n, but only to each matching:

T2 ⊂

{
23, 34, · · · , n− 1

2
− 1,

n− 1

2

}
.

Let the reflection of T2 in s be T ′
2, then {1n} ∪ T2 ∪ T ′

2 is symmetric about s
and its correspondent monomial x12ww

′ is an eigenvector of s with eigenvalue −1,
because, as before, we have:

s(x1nww
′) = −x12s(ww

′) = −x12ww
′.

The number of such eigenvectors is equal to the number of matchings {1n}∪T2∪T ′
2

in Cn which is equal to the number of matchings T2 ⊂ {23, 34, · · · , n−1
2

− 1, n−1
2
}

which by (2.17) and (2.21) is equal to:

M(
n− 1

2
− 1) = M(

n− 3

2
) = Fn−3

2
=

⌊n−3
4

⌋∑
k=0

(
n−3
2

− k

k

)
qk.

However, while the number of matchings {1n}∪T2 ∪T ′
2 equals that of T2, but the

number of edges in each matching {1n}∪T2 ∪T ′
2 is 2k+1 compared to k edges in
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T2. Hence our 2nd contribution to χ(s) is:

[χ2(s)](q) = −
⌊n−3

4
⌋∑

k=0

(
n−3
2

− k

k

)
q2k+1 = −qFn−3

2
(q2). (2.39)

where the negative sign is due to the −1 eigenvalue above.

Adding Equations (2.38) and (2.39) we arrive at:

[χ(s)](q) =

⌊n−1
4

⌋∑
k=0

(
n−1
2

− k

k

)
q2k −

⌊n−3
4

⌋∑
k=0

(
n−3
2

− k

k

)
q2k+1,

with its q-Fibonacci form according to the total degree decomposition:

[χ(s)](q) = Fn−1
2
(q2)− qFn−3

2
(q2).

This completes the proof. □

Example 2.26. For n = 5 we have [χ(s)](q) =
∑1

k=0

(
2−k
k

)
q2k −

∑0
k=0

(
1−k
k

)
q2k+1 =(

2
0

)
+
(
1
1

)
q2 −

(
1
0

)
q = 1− q + q2.

Let q = 1, then χ(s) = 1.

Remark 2.27. For odd n, there is no symmetry in Cn about sr, therefore we do not
discuss the case of χ(sr).

3. Character of FKCn(n) over Dn and decomposition

3.1. Character of FKCn(n) over Dn for even n. We combine (2.23), (2.26) and (2.34)
to obtain the character of FKCn(n = even) over Dn:

charDn [FKCn(n = even)] =

( n
2∑

k=0

n

n− k

(
n− k

k

)
qk, 1, 1 + gcd(n, p)q

n
gcd(n,p) , 1 +

n

2
q2,

⌊n
4
⌋∑

k=0

(
n
2
− k

k

)
q2k − 2

⌊
n
2 −1

2
⌋∑

k=0

(
n
2
− 1− k

k

)
q2k+1 +

⌊
n
2 −2

2
⌋∑

k=0

(
n
2
− 2− k

k

)
q2k+2,

⌊n−2
4

⌋∑
k=0

(
n−2
2

− k

k

)
q2k

)
.

(3.1)

In terms of q-Fibonacci/q-Lucas polynomials, with initial values F0 = 1, F1 = 1, L0 = 2,
L1 = 1 we obtain:

charDn [FKCn(n = even)] =(
Ln(q), 1,

(n
2
−2) columns︷ ︸︸ ︷

1 + gcd(n, p)q
n

gcd(n,p) , 1 +
n

2
q2, Fn

2
(q2)− 2qFn

2
−1(q

2) + q2Fn
2
−2(q

2), Fn−2
2
(q2)

)
,

(3.2)

where Fn(q) =
∑⌊n

2
⌋

0

(
n−k
k

)
qk is the q-Fibonacci polynomial, and 1 + gcd(n, p)q

n
gcd(n,p) is a

sequence of (n
2
− 2) terms forming the characters χ(rp) for p = 2, · · · , (n

2
− 1).
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3.2. Decomposition in irreducible characters. In general a decomposition of a char-
acter χ in irreducible characters χ(i) of a group G, is done according to the following
formula [12].
χ =

∑
i miχ

(i), with the coefficients mi = ⟨χ, χ(i)⟩ = 1
|G|
∑

K |K|χKχ
(i)
K , where the sum is

over conjugacy classes.
We write our character in terms of irreducible characters of Dn:

charDn [FKCn(n = even)] = m1nχ
1n +m

2
n
2
χ2

n
2

+
∑

2≤t≤n
2
−1,gcd(n,t)≥2

m( n
gcd(n,t)

)gcd(n,t)χ
( n
gcd(n,t)

)gcd(n,t)

+m
2(

n
2 −1)11

χ2(
n
2 −1)11 +m

2
n
2
′χ2

n
2
′ (3.3)

The coefficients of the irreducible characters are calculated using the character table of
Dn, Table 3.2, with the character charDn [FKCn(n = even)] of Equation 3.2 appearing in
the bottom row. We obtain:

Table 1. character of FKCn(n = even) over Dn. In this table G1((q)) =
Fn

2
(q2)− 2qFn

2
−1(q

2) + q2Fn
2
−2(q

2) and G2(q) = Fn−2
2
(q2)

ϵ [r] [rp], p = 2, 3, · · · (n
2
− 1) [r

n
2 ] [s] [sr]

c.c. size 1 2 2 1 n
2

n
2

χ1n 1 1 1 1 1 1

χn 2 2cos2π
n

2cos2πp
n

−2 0 0

χ( n
gcd(n,t)

)gcd(n,t)

,
t = 2, · · · , (n

2
− 1)

2 2cos2tπ
n

2cos2ptπ
n

2(−1)t 0 0

χ2
n
2 1 1 1 1 −1 −1

χ2
n
2
′

1 −1 (−1)p (−1)
n
2 1 −1

χ2(
n
2 −1)12 1 −1 (−1)p (−1)

n
2 −1 1

charDn [FKCn(n = even)] Ln(q) 1 1 +

{
gcd(n, p)q

n
gcd(n,p) , if gcd(n, p) ≥ 2

0 otherwise
1 + n

2
q2 G1(q) G2(q)
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m1n =
1

2n

{
Ln(q) + 2 + 2

n
2
−1∑

p=2

(1 + gcd(n, p)q
n

gcd(n,p) ) + (1 +
n

2
q2)

+
n

2

[
Fn

2
(q2) + (1− 2q)Fn

2
−1(q

2) + q2Fn
2
−2(q

2)
]}

mn =
1

2n

{
2Ln + 4cos

2π

n
+ 4

n
2
−1∑

p=2

(1 + gcd(n, p)q
n

gcd(n,p) )cos
2pπ

n
− 2(1 +

n

2
q2)

}

m( n
gcd(n,t)

)gcd(n,t) =
1

2n

{
2Ln + 4cos

2tπ

n
+ 4

n
2
−1∑

p=2

(1 + gcd(n, p)q
n

gcd(n,p) )cos
2ptπ

n

+2(−1)t(1 +
n

2
q2)

}
, 2 ≤ t ≤ n

2
− 1

m
2
n
2
=

1

2n

{
Ln(q) + 2 + 2

n
2
−1∑

p=2

(1 + gcd(n, p)q
n

gcd(n,p) ) + (1 +
n

2
q2)

−n

2

[
Fn

2
(q2) + (1− 2q)Fn

2
−1(q

2) + q2Fn
2
−2(q

2)
]}

m
2
n
2
′ =

1

2n

{
Ln(q)− 2 + 2

n
2
−1∑

p=2

(−1)p(1 + gcd(n, p)q
n

gcd(n,p) ) + (−1)
n
2 (1 +

n

2
q2)

+
n

2

[
Fn

2
(q2)− (1 + 2q)Fn

2
−1(q

2) + q2Fn
2
−2(q

2)

]}

m
2(

n
2 −1)12

=
1

2n

{
Ln(q)− 2 + 2

n
2
−1∑

p=2

(−1)p(1 + gcd(n, p)q
n

gcd(n,p) ) + (−1)
n
2 (1 +

n

2
q2)

−n

2

[
Fn

2
(q2)− (1 + 2q)Fn

2
−1(q

2) + q2Fn
2
−2(q

2)

]}

(3.4)

Example 3.1. Let
charC6 [FKC6(6, q)] = m16χ

16 + m23χ
23 + m23′χ23′

+ m2212χ
2212 + m6χ

6 + m32χ
32 . Then

from Equation (3.4) we have

m16 = 1 + 2q2, m6 = q + q2, m32 = q + 2q2, m23 = q + q3,m23′ = q2, m2212 = q + q3.

Substitution of the above coefficients into the character Equation (3.3) yields:

charD6 [FKC6(6, q)] =(1 + 2q2)χ16 + (q + q3)χ23 + (q2)χ23
′

+ (q + q3)χ2212 + (q + q2)χ6 + (q + 2q2)χ32 .
(3.5)

Sorting in q we have the decomposition of charD6 [FKC6(6)] in usual degrees.

charD6 [FKC6(6)] =χ16 + (χ222 + χ2211 + χ6 + χ33)q

+ (2χ16 + χ222′ + χ6 + 2χ33)q
2 + (χ222 + χ2211)q

3,
(3.6)
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Table 2. character table of Dn for odd n.

ϵ [r] [rp], 2 ≤ p ≤ n−1
2

[s]
c.c. size 1 2 2 n
χ1n 1 1 1 1

χn 2 2cos2π
n

2cos2pπ
n

0

χ( n
gcd(n,t)

)gcd(n,t)

,
t = 2, 3, · · · n−1

2

2 2cos2tπ
n

2cos2ptπ
n

0

χ2
n−1
2 1 1 1 1 −1

charDn [FKCn(n = odd)] Ln(q) 1 1 +

{
gcd(n, p)q

n
gcd(n,p) if gcd(n, p) ≥ 3

0 otherwise
Fn−1

2
(q2)− qFn−3

2
(q2)

which upon putting q = 1 reduces to:

charD6FKC6(6) = 3χ16 + 2χ222 + χ222′ + 2χ2211 + 2χ6 + 3χ33.

3.3. Character of FKCn(n) over Dn for odd n and decomposition. We combine
(2.23) and (2.36), to obtain the character of FKCn(n = odd) over Dn:

charDn [FKCn(n = odd)] =

( n−1
2∑

k=0

n

n− k

(
n− k

k

)
qk, 1, 1 + pq

n
p δn

p
,integer,

⌊n−1
4

⌋∑
k=0

(
n−1
2

− k

k

)
q2k −

⌊n−3
4

⌋∑
k=0

(
n−3
2

− k

k

)
q2k+1

)
.

(3.7)

In terms of q-Fibonacci/q-Lucas polynomials, with initial values F0 = 1, F1 = 1, L0 = 2,
L1 = 1 we have:

charDn [FKCn(n = odd)] =

(
Ln(q), 1,

(n−3
2

) columns︷ ︸︸ ︷
1 + gcd(n, p)q

n
gcd(n,p) , Fn−1

2
(q2)− qFn−3

2
(q2)

)
.

(3.8)

3.4. Decomposition in irreducible characters. Consider the quotient of the Fomin-
Kirillov algebra FKCn(n = odd) associated with the n-cycle subgraph of the complete
graph on n vertices, we have:

charDn [FKCn(n = odd)] = m1nχ
1n +mnχ

n

+
∑

2<t≤n−3
2

m( n
gcd(n,t)

)gcd(n,t)χ
( n
gcd(n,t)

)gcd(n,t)

+m(n
2
)2χ

(n
2
)2 +m

2
n−1
2
χ
2
n−1
2
. (3.9)

The coefficients mi are calculated using the irreducible characters of Dn for odd n, as
shown in Table 2, where the character of FKCn(n) appears in the bottom row, and by
using formula: mi = ⟨χ, χ(i)⟩ = 1

|G|
∑

K |K|χKχ
(i)
K . We obtain the following coefficients.
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m1n =

1

2n

[
Ln(q) + 2 + 2

n−1
2∑

p=2

(
1 +

{
gcd(n, p)q

n
gcd(n,p) if gcd(n, p) ≥ 3

0 otherwise

)

+n
(
Fn−1

2
(q2)− qFn−3

2
(q2)

)]
,

mn =

1

2n

[
2Ln(q) + 4cos(

2π

n
) + 4

n−1
2∑

p=2

(
1 +

{
gcd(n, p)q

n
gcd(n,p) if gcd(n, p) ≥ 3

0 otherwise

)
cos(

2pπ

n
)

]
,

m( n
gcd(n,t)

)gcd(n,t) =

1

2n

[
2Ln(q) + 4cos(

2tπ

n
) + 4

n−1
2∑

p=2

(
1 +

{
gcd(n, p)q

n
gcd(n,p) if gcd(n, p) ≥ 3

0 otherwise

)
cos(

2ptπ

n
)

]

, 2 ≤ t ≤ n− 1

2
,

m
2
n−1
2 1

=

1

2n

[
Ln(q) + 2 + 2

n−1
2∑

p=2

(
1 +

{
gcd(n, p)q

n
gcd(n,p) if gcd(n, p) ≥ 3

0 otherwise

)
− n

(
Fn−1

2
(q2)− qFn−3

2
(q2)

)]
.

(3.10)

Example 3.2. Let n = 5, then

charD5 [FKC5(5)] = m15χ15 +m221χ
221 +m5χ

5 +m5′χ
5′ ,

where the m-coefficients derived from Equation (3.10) are:

m15 = 1 + q2, m221 = q, m5 = q + q2, m5′ = q + q2.

Substituting these m-coefficients into the character, Equation (3.9), we obtain:

charD5 [FKC5(5)](q) = (1 + q2)χ15 + qχ221 + (q + q2)χ5 + (q + q2)χ5′ .

Sorting the above in terms of q yields the decomposition in usual degree:

charD5 [FKC5(5)](q) = χ15 + (χ221 + χ5 + χ5′)q + (χ15 + χ5 + χ5′)q2,

which upon putting q = 1 reduces to

charD5FKC5(5) = 2χ15 + χ221 + 2χ5′ + 2χ5.

3.4.1. Representation decomposition of Dn by conjugation class. Since the basis of FKCn(n)
consists of monomials in variables with no common index (alternatively, matchings in an
n-cycle), the Sn-degree of an element of the basis is product of disjoint 2-cycles and 1-
cycles. So it belongs to the Sn-conjugacy class denoted by tk2t

n−2k
1 where t2 and t1 stand

for 2-cycle and 1-cycle respectively and where k is the degree of monomial. Since we have
the same partition of the basis invariant under Sn-conjugacy class as under usual degree,
we have essentially the same decomposition as by usual degree.
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3.4.2. Representation decomposition of Dn by set partition type. Since no two variable
appearing in a monomial M ∈ B[FKCn(n)] share common indexes, each part of the set
partition contains at most 2 indexes. Therefore, the set partition type for a degree k
monomial M is of the form:

α = (2, 2, · · · , 2︸ ︷︷ ︸
k

, 1, 1, · · · , 1︸ ︷︷ ︸
n−2k

), denoted by 2k1n−2k,

In this notation, each ′2′ in α represents an index of a variable if the variable appears in
M , while each ′1′ represents an index that does not appear in any variable in M . Since
the partition of the basis remains invariant under set partition type as under usual degree,
we essentially have the same decomposition as by usual degree.

Conclusion

We introduced a quotient of the Fomin-Kirillov algebra FK(n), denoted by FKCn(n),
associated with the n-cycle subgraph of the complete graph on n vertices. Through this
quotient, We established an interesting connection between the Fomin-Kirillov algebra
FK(n) and the theory of q-Fibonacci/q-Lucas polynomials. Specially:

• The Hilbert series of this quotient algebra corresponds to the q-Lucas polynomial.

• The dimension of the quotient algebra equals the Lucas number Ln.

• We derived general formulas for the character of FKCn(n) over the Dihedral group
Dn for both even and odd n.

• Notably, the representation decomposition of this quotient algebra for usual degree
remains essentially the same as for both Sn degree and set partition degree.
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