Studies in non-mammalian models species have contributed significantly to our understanding of the biology and the nature of innervation in the heart. The giant danio (D. malabaricus) is a teleost fish species closely related to zebrafish, that is also capable of heart regeneration. We previously described the development and maturation of the giant danio (GD) heart. However, little is known about its innervation. We hypothesized that the pattern of innervation in the GD heart is anatomically and physiologically complex, and that the heart is responsive to physiological modulation similar to that seen in cyprinid fish and mammals. Using various neuronal markers and electron microscopy, we described the presence, distribution, and nature of nerves in the GD heart. Our study shows first that fine intrinsic cardiac nerve fibers are present throughout the heart chambers. Second, nerve soma and ganglia are highly concentrated at nerve plexuses located near the sinoatrial (SA) and atrioventricular (AV) junctions. However, the volume density of axonal processes located over the ventral aorta is highest over the corpus of the bulbus arteriosus. Third, using an ex vivo GD heart preparation, we found that the GD heart responded to both adrenergic and cholinergic agonists, in a manner that mirrors mammalian and teleost hearts. Taken together, our studies show that the GD heart displays complex patterns of innervation, and conserved cardiac physiological responses, and strongly suggest that the GD could be used as a viable model for investigating cardiac biology.

Methods

1. Giant Danio Cardiac Development

2. Measuring chronotropic and inotropic response in the GD heart

3. Innervation of the Adult Heart

4. Innervation pre-vascularization

5. Neurovascular Patterning

Our findings suggest that the Giant Danio is a viable non-mammalian model for adult heart structure and function studies.

Our findings suggest that in the fish heart the innervation precedes coronary vascularization.

We have observed a close spatial correlation between large vessels and nerves.

We hypothesize that the established innervation pattern in the early larval stage may provide guidance cues to the emerging coronary vasculature.

Acknowledgements

NIH R15 HD084262-01, NSF-CC 1659259, Martha C. Rieth Faculty Fellowship, Buehler Family Foundation, FDC and SRF Funds at DePauw.