
Visual Parsing Algorithms for an AR Learning System
Pushpita Saha, Matthew L. Furber, MFA, and Dr. Paul W. Bible

INTRODUCTION

This approach simplifies programming for young children by

using physical cards on a table, which are processed by

algorithms to control an on-screen character, integrating

physical interaction with digital feedback to make learning

more accessible and engaging. This work explores algorithms

to connect the cards in the desired way.

METHODS

COMMAND LINKING ALGORITHMS

CONCLUSION

Our system offers a cost-effective solution with

efficient Raspberry Pi performance, providing an

affordable AR platform for learning. The algorithms

demonstrate potential in parsing and connecting tactile

command cards but are not yet fully effective across all

test cases. This AR-driven approach supports

interactive programming education for young learners.

Future work will focus on improving error handling

and scaling the system for wider educational use.

Figure 1 Machine vision system work model showing webcam as a

scanner for QR-marked command cards on the table that our algorithms

will translate as an executable sequence of a character’s navigational plan Figure 2. Our hand-engineered algorithm running on two test cases. Red circles represent commands,

blue squares represent modifiers, dotted lines are expected edges, and black lines are result edges.

Figure 3. Comparison of mean execution times (y-axis) on Raspberry Pi (left) vs. Windows (right) for 5

test cases (x-axis) per system, with 3 bars per test case representing the 3 algorithms: hand-

engineered (a0), Kruskal’s MST (a1), and a custom MST with refined distance-based weighting (a2).

Figure 4. Jaccard Index (y-axis) for 5 test cases (x-axis), with bars

representing the 3 algorithms. The hand-engineered original algorithm

performed best, the MST had mixed results, and the custom MST showed

consistent but lower performance.

ACKNOWLEDGMENTS

This work was supported by the Information

Technology Associates Program and DePauw Student-

Faculty Summer Research Grant

PERFORMANCE ANALYSIS: RASPBERRY PI VS. WINDOWS

JACCARD INDEX: HIGHER THE BETTER

This research addresses the challenge of making

programming concepts accessible to young children

through a digital tangible learning system. Traditional

input devices can be difficult for children under five, so

we propose using tactile command cards and a machine

vision system to create intuitive navigation games.

Objective: To develop and evaluate visual 

parsing algorithms that translate the spatial 

arrangement of physical cards into commands

We are also exploring different weighting schemes on the

Minimum Spanning Tree for improved accuracy and

flexibility to accommodate other connection uses.

LET’S CONNECT!

Questions? Suggestions? Ideas? Please

send a message so we can connect!

The set of visual parsing algorithms is being developed in

C++ with the videogame library Raylib 5.0 [4]. Visual

Studio Code (version 1.86) serves as the IDE.

Input Processing
Sorting 

Algorithm
Graph 

Connectivity

The algorithms connect command cards (forward, turn left, etc.)

sequentially from left to right, checking if a modifier (e.g. a digit) is

placed on top. Our first, hand-engineered algorithm uses a range-

based method for better modifier connection when placed

perpendicularly (best case). The second algorithm applies Kruskal’s

Minimum Spanning Tree with a priority queue and union-find data

structure, while the third is a custom MST with a refined distance-

based weighting function.

We tested our three algorithms on two architectures: Raspberry Pi 4

and Windows 64-bit. The machine vision system is designed to run on

Raspberry Pi for cost-effectiveness. Running each algorithm 100

times across five test cases showed that despite the Raspberry Pi's

lower processing power, performance metrics are comparable to

Windows, with minimal differences in execution times.

The stability in mean and SD suggest that the performance differences

between architectures are minimal and do not significantly impact reliability.

The Jaccard Index measures similarity between sets, with 1

indicating a perfect match. We used it to compare the

expected vs. result edge set output of three algorithms

across five test cases to assess their suitability for our uses.


