
DePauw University DePauw University

Scholarly and Creative Work from DePauw University Scholarly and Creative Work from DePauw University

Honor Scholar Theses Student Work

4-2020

Computer Science without Computers: A Guide to Teaching Computer Science without Computers: A Guide to Teaching

Concepts of Computer Science without Access to Computers or Concepts of Computer Science without Access to Computers or

Other Technological Devices Other Technological Devices

Anna Nagy 20
DePauw University

Follow this and additional works at: https://scholarship.depauw.edu/studentresearch

 Part of the Computer Sciences Commons, and the Elementary Education Commons

Recommended Citation Recommended Citation
Nagy, Anna 20, "Computer Science without Computers: A Guide to Teaching Concepts of Computer
Science without Access to Computers or Other Technological Devices" (2020). Honor Scholar Theses.
152, Scholarly and Creative Work from DePauw University.
https://scholarship.depauw.edu/studentresearch/152

This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from
DePauw University. It has been accepted for inclusion in Honor Scholar Theses by an authorized administrator of
Scholarly and Creative Work from DePauw University.

https://scholarship.depauw.edu/
https://scholarship.depauw.edu/studentresearch
https://scholarship.depauw.edu/studentwork
https://scholarship.depauw.edu/studentresearch?utm_source=scholarship.depauw.edu%2Fstudentresearch%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.depauw.edu%2Fstudentresearch%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1378?utm_source=scholarship.depauw.edu%2Fstudentresearch%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.depauw.edu/studentresearch/152?utm_source=scholarship.depauw.edu%2Fstudentresearch%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages

Computer Science without Computers
A Guide to Teaching Concepts of Computer Science without

Access to Computers or Other Technological Devices

Created by Anna Nagy

DePauw University Honor Scholar Program, Class of 2020

Sponsor: Dr. Chad M. Byers
Committee: Dr. Gloria C. Townsend & Dr. Jamie D. Stockton

	

2	

I	would	like	to	thank	the	following	people	for	their	constant	support,	encouragement,	and	
guidance	during	this	year-long	endeavor:	Chad	Byers,	Gloria	Townsend,	Jamie	Stockton,	and	

Kevin	Moore.	
		

A	special	thanks	to	Amy	Welch	for	her	patience	during	my	constant	stream	of	questions.	
		

The	biggest	thank	you	of	all	goes	to	Chase:	thank	you	for	loving,	supporting,	and	keeping	me	
sane	through	this	process.	As	always,	you	have	been	my	rock.	

	

	

3	

Table of Contents

Forward 5

Lesson 1- What is Computer Science 11

Lesson 2- Algorithms 17

Lesson 3- Intro to Loops 25

Lesson 4- For Loops 33

Lesson 5- While Loops 39

Lesson 6- Conditionals 45

Lesson 7- Types 51

Glossary 59

Additional Resources 63

Computer Practice 65

Appendix 69

	

4	

	

5	

Forward

As the world becomes more are more dependent on technology, jobs in the

technology sector are growing at an exponential rate. Computer science is finding

itself integrated into every sector of industry, as more programmers are needed for

the machines that are automating previously manual tasks. As the world lurches

forward towards this technologically advanced future, students need to be prepared

for the changes in the job field that will affect their futures.

I had my first interaction with computer science as a freshman in college. I had

heard of it at the end of high school, but didn’t know what it was and had no clue

how important it was. As I talked to others in my classes, I realized that this was a

common reality. Even those who had previous exposure to computer science, had

not encountered it before at least high school. As I started to look in to this more, I

realized that at least in Indiana, the state standards for computer science were weak

at best. As I moved through college, I began to volunteer with groups that made an

effort to remedy this problem in the local area. We used public library computers

and student’s personal iPads that they received for schoolwork to play computer

games and learn the basics of coding with block code.

	

6	

However, these activities made me think about all of the math and science camps I

went to as a kid. Why were there not any camps for computer science? Why had

my high school offered biology, physics, chemistry, and earth & space science but

not computer science? Why was this the case for most of my peers as well? This

thought stayed in the back of my mind for 2.5 years, and eventually I had thought

about it enough to come up with a way to try to start addressing this issue.

The first obstacle that I noticed was time. When state standards do not prioritize

learning about computer science, teachers simply do not have time to add activities

into their schedule with all of the other topics they need to cover to prepare their

students for the many standardized tests they will take over the course of the year.

Time is a problem not so easily solvable. This will take more than I am able to

provide to be changed, but hopefully soon the importance of computer science will

be recognized in schools, and making time will no longer be an obstacle.

The second problem is limited funding for schools prevents teachers from being

able to access the technology to teach computer science to their students. Computer

labs are only staffed part time because the school requires the staff member to also

	

7	

be a librarian or secretary. In some schools, teachers are able to fundraise or apply

for grants to get tablets for their students, but there are still other classes in the

same school that aren’t able to receive the same materials.

Lack of resources IS a problem I can address. While I can’t find the funding for

every classroom, I have decided that the best solution for now is to equip teachers

with the skills and knowledge to teach computer science without computers.

Although the concept seems strange, I believe it can be equally effective, because

writing code on a computer can sometimes be too abstract for younger kids to

understand anyway.

The idea came to me as I went through my college classes, struggling to come up

with ways to visualize the concepts I was learning. In the beginning classes,

professors were very good about using real world examples, and comparing

concepts to objects and processes we encountered on a day to day basis, but as I

moved into upper level classes that went away, and I had to do that on my own. It

was then that I realized that especially with younger kids, hands-on learning is

	

8	

significantly more effective. Giving kids memories to help remember concepts and

helping them link new concepts to things they already know has proven time and

time again to be an effective method for learning.

These lessons are designed to use familiar objects and previous knowledge to

model computer science concepts and give kids a way to remember how they work

and how they are connected.

	

9	

Lesson 1- What is Computer Science?

Pre-class Preparations:

Print off the images from the Appendix that correspond with Lesson 1. For the first

set of 4 images can just be printed off once, to be passed around or hung up on the

board for the wrap-up discussion. For the next 2 pages, you should print off one set

for each group or table you plan on having.

You should also assemble one craft box per group or table. These craft boxes can

include anything you want, but some examples of materials that would be good to

include are: pompoms, buttons, pipe cleaners, stickers, construction paper,

markers, glue, scissors, and tape.

Beginning Discussion: What are computers?
Have your class split into groups of three or four (larger groups can also work if

you have your classroom arranged in pods or tables) and write down some things

about what they think a computer is.

Ask them the following questions to have them brainstorm about:

1) What	is	a	computer?	

2) What	does	a	computer	do?	

3) What	can	a	computer	look	like?	

	

10	

After giving a few minutes of time for brainstorming, have each group share some

of their answers with the class. Talk about the differences between really old

computer and computers now. After having a class discussion, if some of the

following answers have been missed, take a minute to talk about them:

1) A	computer	is	a	machine	that	can	solve	problems	and	store	information.	

2) A	computer	can	search	for	information,	store	information,	and	use	

information	to	solve	problems.	

3) A	computer	can	be	a	desktop,	a	laptop,	a	phone,	or	many	other	things	

After talking about computers, ask them to think about people who work with

computers. Have them get back together in their groups and talk about computer

scientists. If they don’t know what a computer scientist is or have never heard of

one, that’s okay! Tell them to give their best guesses based off of their knowledge

of scientists and computers.

1) What	does	a	computer	scientist	do?	

2) Where	does	a	computer	scientist	work?	

3) What	does	a	computer	scientist	look	like?	

After giving a few minutes of time for brainstorming, have each group share some

of their answers with the class. Then talk about the differences and similarities

	

11	

between each groups’ answers. After having a class discussion, if none of the

questions have been answered exactly, take a minute to talk about the following

answers:

1) A	computer	scientist	can	do	a	lot	of	things.	They	can	work	with	large	

amounts	of	data	to	find	patterns,	write	code	for	computer	programs	and	

apps	on	your	phone,	and	make	websites.		

2) Computer	scientists	can	work	almost	anywhere!	Lots	of	different	

companies	today	need	computer	scientists	because	so	much	of	our	day-to-

day	life	involves	the	internet	and	other	technologies.		

3) There	is	no	one	look	for	a	computer	scientist.	They	can	be	men	or	women,	

old	or	young,	and	from	anywhere	in	the	world!	If	you	like	problem	solving	

and	working	with	computers,	then	you	might	like	to	be	a	computer	

scientist!	

For the last part of your discussion, ask students to think of things that they use that

a computer scientist might have helped create. This can be anything from smart

phone apps to GPS in their cars to the robot vacuum that they use at home. Have

them think specifically about the things they might use when they are at school like

their library cards or e-report cards.

	

12	

In-class Activities:
Just like the discussion, there are two parts to the activities for this sessions. The

first activity will be an individual, hands-on activity to get students actively

engaged, and the second will be a cooperative group activity to get them thinking

about all the different types of people who can be computer scientists.

Activity 1 -What is a computer? (20-25 minutes)

For this activity, distribute the craft boxes to small groups of students. Then give

the class 15 minutes to each make a model that they think represents a computer.

Tell them to remember what computers should be able to do from what you

discussed. When 15 minutes are up, gather the class away from the materials and

have everyone share their computers with the class. Encourage them to explain in

what ways it represents a real computer.

Activity 2- What is a computer scientist? (20-25 minutes)

Give each group the pages of pictures from the Appendix. Ask them to make up

personas for each person. Write down a name, age, family, and hobbies for each

person. After giving them 10 minutes to do this, tell them to talk about how each

person could be a computer scientist. After giving another 5 minutes for

discussion, go around the room and have each group share one or two of their

people and how they are a computer scientist.

	

13	

Wrap up:
Pass around the images from the Appendix or hang them on the board. Have each

group talk about why people might not picture the people in the images when they

think of computer scientists. Encourage them to think about why that’s a problem

and what they can do to help others think about all the different kinds of people

who can be computer scientists. To wrap everything up, have each student write a

list of three things that they learned about computers or computer scientists.

Finally, have them share with a partner at least one of the things they learned.

Tips for What Might Go Wrong:
When creating a computer model out of arts and crafts supplies, remind students to

stay focused on the task and not get distracted by the materials and free creative

time. Make sure they are choosing elements for their computers because of the

function it represents and not just for decoration. During the second activity,

students might have trouble coming up with jobs for their characters based off of

the personas they made for each one. Remind them that people can have a job that

doesn’t relate to their hobbies or what they like to do. Be ready to address

stereotypes about what kind of people can like computers and be computer

scientists. Remember that debunking those stereotypes is really the point of this

	

14	

first lesson, so if students don’t actually bring them up, you certainly can for the

sake of discussing why they are wrong.

Adaptations:
Students who usually require a little extra help may need someone to help them

think through the design of their model computer, and help them put it together.

For the second activity, if there are students who get overwhelmed in a group, or

who you know will not contribute in a larger group, feel free to break groups into

smaller ones or change it to partners instead. The same can go for students who are

picking things up faster. Put them together and ask them to think about what we

can do to help break people’s incorrect thoughts about what computer scientists

look like.

State Standards:
Science	and	Math		

• SEPS.5	Using	mathematics	and	computational	thinking	

• SEPS.8	Obtaining,	evaluating,	and	communicating	information	

English/Language	Arts	

• 4.RF.1	Apply	foundational	reading	skills	to	demonstrate	reading	fluency	and	

comprehension.	

• 4.RV.1	Build	and	use	accurately	general	academic	and	content-specific	

words	and	phrases.		

	

15	

• 4.RV.2.4	Apply	knowledge	of	word	structure	elements	(e.g.,	suffixes,	

prefixes,	common	Greek	and	Latin	affixes	and	roots),	known	words,	and	

word	patterns	to	determine	meaning.		

	

	

16	

	

17	

Lesson 2- Algorithms

Pre-class Preparations:

For this lesson, you will need to print off the graph paper programming worksheets

found in the Appendix. There are three levels: intro, regular, and advanced. The

goal is for all students to be able to complete the regular or advanced pages, but the

into worksheet is also an option for students who need some modification.

For the peanut butter and jelly sandwich activity, if you don’t have any peanut

allergies you can get the actual supplies for sandwiches and make them at the end.

If peanuts are not okay, you can substitute for other sandwich toppings, or skip this

part.

Beginning Discussion:
Talk about the new vocabulary word, “algorithm”. Write it on the board and have

the class repeat it aloud. First ask if anyone knows what the word means. After

getting a few guesses, give them the definition “an algorithm is a set of steps to

complete a task or solve a problem”. Ask the students if they can think of anything

else that is a set of steps to complete a task. (Examples are recipes, directions to

play a board game, instructions to assemble a piece of furniture, steps for a Lego

set, etc)

	

18	

In-class Activities:
Activity 1- Graph Paper Programming (20-25 minutes)

Start first with a demonstration on the board. Draw a set of 3x3 squares and color

a few of them in. Draw a second set of 3x3 squares but leave them blank for now.

(These will be used to replicate the first one after you’ve written out the

instructions.) Designate the upper left hand corner as starting square and have the

class help you decide what steps you need to take to write out the directions to

copy the pattern. You can only move one step at a time in any direction to fill in

the correct squares. Write out the directions on the board with arrows indicating

what direction you should move, and writing an “X” to indicate that the current

square should be colored in. When you have finished writing out the steps, follow

them one step at a time to duplicate the first picture in the empty 3x3.

Here is an example of instructions that would help you duplicate the squares

below (starting point is the lower left corner): ^, >, X, >, X, ^, X, <, <, X

After doing an example on the board, pass out the Graph Paper Programming

Sheets found in the Appendix, and have kids work in pairs to write out directions

	

19	

for the first few pictures. Then, have them each pick a more challenging picture

and write out the directions by themselves. After they have had time to complete

the directions, have them trade with their partner, draw a blank set of squares, and

see if they can follow the written directions and see if it matches one of the

originals.

Activity 2- Peanut Butter Sandwiches (20-25 minutes)

Have students get back in pairs and remind them the importance of remembering

all of the little details because with computers, they can’t fill in the blanks or make

little decisions. Explain how computers have to have every small step written into

their instructions because they can only execute directions, not make decisions, or

fill in steps on their own. Have them write out the steps to make a peanut butter

and jelly sandwich. Tell them that step one is “walk into the kitchen” and then let

them go from there.

Collect all of the directions and read them out to the class one at a time. Tell kids

to raise their hands when they think the directions missed a step. Go through and

“debug” all of the instructions and try to see if any of the directions got it all right.

See if there are any steps that everyone missed. For an extra, fun activity, mix up

and hand out the instructions to different groups, hand out supplies, and tell each

	

20	

group to make their sandwich exactly how the instructions tell them to. See which

instructions actually make an edible sandwich!

Activity 3- Dance Routine (30-35 minutes)

Start by reviewing the important things about writing algorithms that you have

learned so far (breaking things down into small pieces, writing out each step

explicitly, and proofreading). Talk about how important it is to write detailed

instructions and to check each other’s work for mistakes.

Split the class into groups of five or six. Tell each group to pick a dance that they

like to do, and write out an algorithm to teach others how to do it. Spend some

time going around and helping each group get their instructions written out and

having them do the dance exactly following the steps they have written out to see

if it works. Then go through the instructions one group at a time with the class.

Members of each group go up to the front and demonstrate the instructions while

everyone else watches and learn the dances. Then play some music and give the

kids some time for a dance party with their new moves.

Wrap up:
Review the concepts of algorithms and debugging and talk about what they are

and why they are important. What are the skills needed to do a good job

debugging someone’s code? Explain that there are some computer scientists

	

21	

whose job it is to debug other people’s code. Compare this to a publisher whose

job it is to proofread an author’s writing. Talk about why it is so important that

code doesn’t have any mistakes in it. Why must code be written out with very

specific instructions? Computers can’t make decisions on their own or fill in the

blanks between what is written and what is actually supposed to happen. Ask what

was the hardest part for writing an algorithm for something as complex as a dance.

What did they do to break it down and make it easier? How did they make sure

they weren’t missing any steps?

Tips for What Might Go Wrong:
The Graph Paper Programming activity should go pretty smoothly. The trickiest

part is keeping track of the steps to make sure that the correct squares are getting

filled in. If students are having trouble with this, you can suggest they write the

directions for each row next to the row so that they are broken up and not all in one

giant line. They can also cross off the steps as they go through them to check their

partners work. This can help them keep things straight.

For the Peanut Butter Sandwich directions, it’s anticipated that they will miss a lot

of the prep of getting out the supplies, opening jars, etc. If most of them do, you

can give them a chance to correct their instructions before trading and letting them

test the directions by making the sandwich.

	

22	

Adaptations:
The Graph Paper Programming activity has three levels of worksheets for you to

give to your students. There is a regular one, a more advanced one, and one with

easier problems for kids who are struggling. This is an easy way to modify the

activity, but partners or groups can also be used as well.

For the Peanut Butter Sandwich Instructions, students who are struggling could

require more help from you or other adults in the room to think through the steps.

Students who are more advanced could try a more complicated recipe, such as

baking cookies.

For the Dance Routine, students who are struggling could work on a dance that

already has simple, broken down steps like the chicken dance or the Macarena. If

students are picking it up quickly, they could write directions for a dance that

requires a lot of movement from both hands and feet.

State Standards:
Science	and	Math	

• SEPS.5	Using	mathematics	and	computational	thinking	

• SEPS.8	Obtaining,	evaluating,	and	communicating	information	

Physical	Education	

• Combines	locomotor	movement	patterns	and	dance	steps	to	create	and	

perform	an	original	dance	(4.1.3.A)	

	

23	

• Listens	respectfully	to	corrective	feedback	from	others	(such	as	peers,	

adults).	(4.4.2.A)	

English/Language	Arts	

• 4.RF.1	Apply	foundational	reading	skills	to	demonstrate	reading	fluency	and	

comprehension.	

• 4.RV.1	Build	and	use	accurately	general	academic	and	content-specific	

words	and	phrases.		

• 4.RV.2.4	Apply	knowledge	of	word	structure	elements	(e.g.,	suffixes,	

prefixes,	common	Greek	and	Latin	affixes	and	roots),	known	words,	and	

word	patterns	to	determine	meaning.		

• 4.W.3.2	Write	informative	compositions	on	a	variety	of	topics	that	provide	

facts,	specific	details,	and	examples	from	various	sources	and	texts	to	

support	ideas	and	extend	explanations.	

• 4.W.6.2c	Spelling	–	Using	spelling	patterns	and	generalizations	(e.g.,	word	

families,	position-based	spellings,	syllable	patterns,	ending	rules,	

meaningful	word	parts,	homophones/homographs)	in	writing	single	and	

multisyllable	words.		

	

24	

	

25	

Lesson 3- Intro to Loops

Pre-class Preparations:

For the Graph Paper Programming, the three levels of worksheets can be found in

the Appendix. Print these off before the lesson so that you will have them ready. If

you have the space, set up the obstacle course. It would be best to have in a gym or

outside, but you could get away with an area in your classroom if you set it up

carefully around your space. You will need a series of 3 or 4 objects for students to

jump over, something to make a tunnel, a large board and some bricks, and some

cones. Using masking tape, make a course on the ground divided into squares like

a hopscotch path. Then place the jumps in every other square and the tunnel over 3

or 4 squares. Make a section that is three rows wide and place the cones along the

middle row, then have students weave between them. For examples of how the

course can be set up, look in the Appendix.

Beginning Discussion:
Start off with the generic question of “What is a loop?” without any context. Then

ask what a loop might be when related to computer science and coding. Explain

that a loop in computer science is a way of writing something that is supposed to

happen over and over again (or at least twice). Then ask why they think computer

	

26	

scientists use loops in their code. Some of the reason are: it makes it shorter, it

makes it faster to read/write, and it makes it possible for the number of times to

change each time without having to write new code. Ask them if they can think of

something they’ve learned in math that is like a loop. (Multiplication- 3X4 instead

of 3+3+3+3)

In-class Activities:
Graph Paper Programming (20-25 minutes)

Here we bring back the graph paper programming activities, but focus on using

loops to shorten the amount of instructions you need to write out for each problem.

Demonstrate this by drawing two squares on the board again, but this time make

them 4X4. Fill in one as follows and write out the directions:

Here, if the starting point is the lower left hand corner, you could write the

instructions like this: (>X)3, ^, (<X)3, ^, (>X)3, ^, (<X)3

Talk about how much faster that is to write than writing out each step for every

square. Then follow your directions like before and replicate the squares onto the

	

27	

empty one. After the demonstration, hand out the Graph Paper Programming

Sheets found in the Appendix, and have kids work in pairs to write out directions

for the first few pictures. Then, have them each pick a more challenging picture

and write out the directions by themselves. After they have had time to complete

the directions, have them trade with their partner, draw a blank set of squares, and

see if they can follow the written directions and see if it matches one of the

originals.

Obstacle Course (30-45 minutes)

For this obstacle course, let each student walk through the obstacle course first.

Then have each of them will write out directions for how to get through the course,

without using loops. After they have written out their initial instructions, have

them look at the course and their directions and figure out how to shorten their

directions by adding loops. Then encourage them to pair up and go through the

obstacle course according to their partner’s directions. Tell them to pretend like

they’re a computer who must follow the directions EXACTLY. That means if there

is a mistake in the directions, they still have to do what it says. See how many

actually get though the obstacle course without doing something incorrectly.

	

28	

Wrap up:
Review the reasons why computer programmers use loops: it makes it shorter, it

makes it faster to read/write, and it makes it possible for the number of times to

change each time without having to write new code. Then ask what challenges

students ran into while writing the loops. Talk about mistakes that were made in

the obstacle course. What happened when one part of the code was wrong? Did

that make the rest of the course directions wrong too? Explain that in this activity,

they were just like computers who couldn’t make decisions or recognize that what

they were told to do was wrong. Remind students about the importance of

proofreading their code, especially as they add more complicated elements, like

loops.

Tips for What Might Go Wrong:
Again, the Graph Paper Programming activity should go pretty smoothly. Keeping

track of the steps to make sure that the correct squares are getting filled in becomes

even more tricky when you add in loops. If students are having trouble with this,

you can suggest they write the directions for each row next to the row so that they

are broken up and not all in one giant line. They can also cross off the steps as they

go through them to check their partners work. This can help them keep things

straight.

	

29	

The obstacle course needs lots of space. If possible, outside would be best, but if

that isn’t an option, a gym, the hallway, or possibly the classroom if you have a

large space, will work. Students might have trouble recognizing what to write for

the loops in this format, so you may need to go through an example to start.

Adaptations:

Just like the last Graph Paper Programming, there are three levels for worksheets

based on the students’ skill level. The regular worksheet has a range of difficulties

in the problems, but the advanced worksheet has mostly harder problems, and the

beginner worksheet is good for those who are learning more slowly. For extra

modification, you can allow students who are struggling or learning slowly to work

together on the worksheets.

Partner work is also the easiest way to modify the obstacle course directions. You

could also modify the activity by working with students who are struggling to get

the initial directions for completing the course, and then letting them condense it

into loops on their own.

State Standards:
Science	and	Math	

• SEPS.8	Obtaining,	evaluating,	and	communicating	information	

• SEPS.5	Using	mathematics	and	computational	thinking	

	

30	

Physical Education

• Jumps	and	lands	in	the	horizontal	and	vertical	planes	using	a	mature	

pattern	within	activities	(such	as	in	dance,	educational	gymnastics	and	

small-sided	practice	tasks	and	game	environments).	(4.1.2.A)	

• Combines	movement	concepts	with	skills	in	small-sided	practice	tasks	(such	

as	gymnastics	and	dance	environments).	(4.2.2.A)		

• Exhibits	responsible	behavior	in	both	independent	and	group	situations.	

(4.4.1.A)	

• Listens	respectfully	to	corrective	feedback	from	others	(such	as	peers,	

adults).	(4.4.2.A)	

English/Language Arts

• 4.RF.1	Apply	foundational	reading	skills	to	demonstrate	reading	fluency	and	

comprehension.	

• 4.RV.1	Build	and	use	accurately	general	academic	and	content-specific	

words	and	phrases.		

• 4.RV.2.4	Apply	knowledge	of	word	structure	elements	(e.g.,	suffixes,	

prefixes,	common	Greek	and	Latin	affixes	and	roots),	known	words,	and	

word	patterns	to	determine	meaning.		

• 4.W.3.2	Write	informative	compositions	on	a	variety	of	topics	that	provide	

facts,	specific	details,	and	examples	from	various	sources	and	texts	to	

support	ideas	and	extend	explanations.	

• 4.W.6.2c	Spelling	–	Using	spelling	patterns	and	generalizations	(e.g.,	word	

families,	position-based	spellings,	syllable	patterns,	ending	rules,	

	

31	

meaningful	word	parts,	homophones/homographs)	in	writing	single	and	

multisyllable	words.		

• 4.W.6.2c	Spelling	–	Using	spelling	patterns	and	generalizations	(e.g.,	word	

families,	position-based	spellings,	syllable	patterns,	ending	rules,	

meaningful	word	parts,	homophones/homographs)	in	writing	single	and	

multisyllable	words.		

	

32	

	

33	

Lesson 4- For Loops

Pre-class Preparations:
Before class, print off the two pages of activity cards from the Appendix and cut

them out. You will need to have one copy for each group, so decide how many

groups you will want to split your class into, make that many copies, and keep

them in separate piles. If you want to make the activity last longer, you can print

out two sets of cards for each group. Then gather enough dice for each of the

groups to have two six-sided or one twelve-sided die. Two of the cards have them

spell a spelling word, as a way to incorporate some practice into the activity, so

printing off a list of spelling words for each group so that the kids can pick one

would also be a good thing to do for each group.

Beginning Discussion:
Review the concepts of loops in computer science and remind the class why they

are used: it makes it shorter, it makes it faster to read/write, and it makes it possible

for the number of times to change each time without having to write new code.

Then ask them how they think programmers let the computer know how many

times they want to loop to run. Explain that there are a few different ways, but one

of them is by telling it a set number. This is called a “for loop” because you are

telling it how many times you want it to run for. This means if the programmer

	

34	

wants it to run a different number of times later, they have to go back in and

change the number of times that is written in the code.

In-class Activities:
Get Up and Move! (15-20 minutes)

Before leaving the classroom, show the cards and dice to the students. Pull out and

example card and write on the board “Do ___ (jumping jacks)” or “Do a (dance

party) for ____ seconds”. Then roll the dice and put the number in the blank. This

is the format of a for loop. Instructions inside of the parenthesis that will be done a

set number of times based on what is written outside of the instructions. It is also a

good idea to take a few minutes before leaving the classroom to read each of the

cards to the class and have students demonstrate each activity so that everyone

knows what all of the cards mean. This is also a good time to give modification

activities for kids who are unable to do some of the more challenging activities.

This activity is best played somewhere outside the classroom where there is lots of

space for the students to spread out with their teams and be able to do the physical

activities for each turn. If you have access to a gym or to the playground outside,

that is ideal, but the hallway or other large indoor spaces will work as well. Divide

the students into groups and give each group their dice and activity cards. They

will start with the cards upside down in a pile, take turns picking a card and then

	

35	

roll to see how many time they should complete the activity. The cards represent

the directions inside of the loop, and the number they roll is the number of times

they are to complete the loop.

Run the activity for five minutes, then mix up the groups, and run the activity

again. Do this at least three times with the students in different groups. By doing

this you create an even bigger loop. See if anyone notices, and if they don’t, be

sure to bring it up in the wrap up discussion!

Wrap up:
First ask the class if they realized the bigger loop you were doing while the activity

was happening. Then ask them to think of any other loops or patterns in their life

that are like for loops; they happen a fixed number of times every time. Some of

these can be a week, month, or year that repeats on the same loop every time. In

middle school and high school, most students go to several different classes and

have different teachers each day, but they have a set number of periods. That daily

routine is like a for loop. Sports drills that they run in practice can be a for loop if

the coach tells the athletes how many times they are going to run the drill.

Tips for What Might Go Wrong:
When playing any game that involves running or moving around a lot, it is

important to be careful of the environment you set up with. If playing outside, be

	

36	

sure there are no concrete surfaces, holes, rocks, or dips that students could fall or

trip on. Proper footwear is also key in preventing injuries in a game with running.

Since there are a lot of activities that require jumping and laying down, dresses and

skirts are also not ideal.

The biggest thing to be cautious of in this activity is that the kids are taking turns

and everyone is getting a chance to roll the dice and pick a card. Hopefully mixing

up the groups a few times throughout will help keep this from being a problem, but

it is something to watch out for either way.

Adaptations:
The main adaptation for this activity is just physical modification for activity cards

that students are unable to do. Give them a few substitution options, or have them

do one of the other activities instead. Make sure that groups with students who are

struggling are taking their time to complete each physical activity.

State Standards:
Physical	Education	

• Jumps	and	lands	in	the	horizontal	and	vertical	planes	using	a	mature	

pattern	within	activities	(such	as	in	dance,	educational	gymnastics	and	

small-sided	practice	tasks	and	game	environments).	(4.1.2.A)	

• Combines	locomotor	movement	patterns	and	dance	steps	to	create	and	

perform	an	original	dance	(4.1.3.A)	

	

37	

• Combines	movement	concepts	with	skills	in	small-sided	practice	tasks	(such	

as	gymnastics	and	dance	environments).	(4.2.2.A)		

• Exhibits	responsible	behavior	in	both	independent	and	group	situations.	

(4.4.1.A)	

• Listens	respectfully	to	corrective	feedback	from	others	(such	as	peers,	

adults).	(4.4.2.A)	

• Praises	the	movement	effort	of	others	both	more	and	less	skilled.	(4.4.3.A)		

• Accepts	players	of	all	skill	levels	into	the	physical	activity.	(4.4.3.B)	

• Exhibits	etiquette	and	adherence	to	rules	in	a	variety	of	physical	activities.	

(4.4.4.A)	

English/Language	Arts	

• 4.RV.1	Build	and	use	accurately	general	academic	and	content-specific	

words	and	phrases.		

• 4.RV.2.4	Apply	knowledge	of	word	structure	elements	(e.g.,	suffixes,	

prefixes,	common	Greek	and	Latin	affixes	and	roots),	known	words,	and	

word	patterns	to	determine	meaning.		

• 4.W.6.2c	Spelling	–	Using	spelling	patterns	and	generalizations	(e.g.,	word	

families,	position-based	spellings,	syllable	patterns,	ending	rules,	

meaningful	word	parts,	homophones/homographs)	in	writing	single	and	

multisyllable	words.		

	

	

38	

	

39	

Lesson 5- While Loops

Pre-class Preparations:
Before this lesson, gather 10-12 stuffed animals, toys, or other distinguishable

items. You should also plan out a large space where you can set these objects out

in a long line, about three feet apart. A hallway is a good place for this. Otherwise,

you could use the gym or a space outside. The other activity will require a large

open space like a gym or outdoor field or basketball court.

Beginning Discussion:
Review the concepts of loops in computer science again, and remind the class why

they are used: it makes it shorter, it makes it faster to read/write, and it makes it

possible for the number of times to change each time without having to write new

code. Then ask them to recall the last type of loop they learned about and how the

computer knows how many times to run the loop. After reviewing for loops,

introduce the concept of a while loop. Explain that while loops have a condition

that tells the computer how long to do the loop. As long as the condition doesn’t

change, the loop keeps running.

Give the example of being hungry and eating chips. You are going to keep eating

the chips, one at a time, in a loop until you are not hungry. Then you stop the loop.

Tell the students to get with a partner and think of at least one other thing in their

	

40	

real lives that is like a while loop. (Examples can include doing their homework

one problem at a time until they have finished it, trick-or-treating house by house

until their candy basket is full, or searching for items in the grocery store one at a

time until they have everything on their list.)

In-class Activities:
Stuffed Animal Game (15-20 minutes)

For this game, you will divide the students up into pairs and allow them each to

pick a stuffed animal from the stuffed animals laid out at the front of the room.

They should pick the animal in their head, and not tell their partner. Then explain

to them the loop they will do. In the hallway, set out the animals three feet apart in

a line down the hallway. Students will take turns being the computer who runs the

loop: walking three steps, picking up an animal, and checking with their partner to

see if it’s the correct one. If it isn’t, they put it back down, walk three more steps,

pick up another, and check again. This process mimics the way a computer would

run the loop, check to make sure the condition was still the same, and then run it

again. After one partner’s animal has been found, have the two switch roles and the

other partner play the part of the computer while the first has the animal in their

head and checks the condition of the loop.

	

41	

Red Light, Green Light (20-30 minutes)

This is another game that will require a lot of space to run, but not a ton of prep

ahead of time. Before leaving the classroom, explain the rules of the game and how

the game simulates a while loop. There will be one student at a time who is “it”.

They will stand on the far end of the space with their back turned to the rest of the

class. They will be in charge of changing the red light to green and back. The rest

of the students stand in a line along the opposite edge of the space. They will

walk/run forward towards the person who is “it” when that person’s back is turned

and the light is green, then when the person turns and yells “red light” they have to

freeze. The loop they are completing is one step at a time, each time they have to

check to make sure that the person who’s “it” hasn’t turned around or they will get

caught, like a computer crashing!

After talking through the rules of the game and the way it relates to while loops,

take the class to the place you have selected for the activity and play it for 20 or 30

minutes, rotating the person who’s “it” every five minutes.

Wrap up:
Start off the wrap up discussion by posing the question “What is the difference

between a for loop and a while loop?” Follow this up with “What about them is

similar?” Then talk about why a programmer might want one instead of the other.

	

42	

(If they know how many times they want something to happen they would use a

for loop, but if the number of times they want the loop to run might potentially

change depending on the situation, then they would want a while loop.)

Tips for What Might Go Wrong:
Again for this lesson, when playing any game that involves running or moving

around a lot, it is important to be careful of the environment you set up with. If

playing outside, be sure there are no holes, rocks, or dips that students could fall or

trip on. If you do decide to use a basketball court, be aware that students might get

more injury from falling. Proper footwear is also key in preventing injuries in a

game with running.

Make sure that in the stuffed animals game, students are actually taking three steps

between each animal, and actually picking them up each time to keep the loop

consistent. It should be more about the process than about getting to the correct

animal as quickly as possible.

Adaptations:
For the stuffed animal activity, you may need to be mindful of who is partnered

with students who are struggling to understand the concepts. Make sure that those

students are paired with someone who will not breeze through the activity, and will

take the time to go through it at a slower pace. If you have any students who are

	

43	

not physically able to run, you can require everyone to walk instead during the red

light, green light game. This can actually help keep the game at a slower pace so

that students can think about checking to make sure that the person is still turned

around.

State Standards:
Science	and	Math	

• SEPS.5	Using	mathematics	and	computational	thinking	

• SEPS.8	Obtaining,	evaluating,	and	communicating	information	

Physical	Education		

• Praises	the	movement	effort	of	others	both	more	and	less	skilled.	(4.4.3.A)		

• Accepts	players	of	all	skill	levels	into	the	physical	activity.	(4.4.3.B)	

• Exhibits	etiquette	and	adherence	to	rules	in	a	variety	of	physical	activities.	

(4.4.4.A)	

English/Language	Arts	

• 4.RV.1	Build	and	use	accurately	general	academic	and	content-specific	

words	and	phrases.		

• 4.RV.2.4	Apply	knowledge	of	word	structure	elements	(e.g.,	suffixes,	

prefixes,	common	Greek	and	Latin	affixes	and	roots),	known	words,	and	

word	patterns	to	determine	meaning.		

	

	

44	

	

45	

Lesson 6- Conditionals

Pre-class Preparations:
For this lesson, you will need to gather plastic clothes hangers for each student,

lots of construction paper, scissors, markers, string, and tape for each table or

group of students. You will also need straws, sticks, or some other support method

for the lower levels of the mobile. You can also gather decorative craft supplies for

students to add to their conditional mobiles, but that is optional.

Beginning Discussion:
Think back to learning about while loops. The loop would run over and over while

a certain condition was true or false. This created a conditional statement: IF the

condition is still true, THEN the loop runs again. These if- then statements help

provide options and different paths in the code of a program. Instead of writing a

different program for each situation, the code can have a built-in flow chart that

tells the computer what to do in both situations. Ask the class if they can think of

any decisions that they make that follow the IF-THEN conditional format?

(Examples of this could be deciding whether or not they need an umbrella, or

whether or not they should put on tennis shoes.)

	

46	

In-class Activities:
Conditional Mobiles (25-35 minutes)

Put supplies for the activity on each table or split the class up into groups and

allow students to work on the floor. Make sure that each student has a hanger, and

have them cut out one long rectangle for the bottom of the hanger that describes

the flow chart they will be making. This can include getting dressed for the day,

picking a pet, or picking a snack. Then, using a piece of string, cut out and attach a

rectangle with the first condition to a piece of straw. This could be “IF it’s

raining”, then do the same with two options “THEN put on a rain coat” and “IF

NOT no rain coat today”. Continue the process with other questions, encouraging

them to come up with at least 4 questions that they create options for.

	

47	

After students have had time to create their conditional mobiles, give them a few

minutes to decorate them and make them unique, then have them share either in

their groups, or if you have time, with the entire class.

Wrap up:
Take each student’s conditional mobile and hang it around the classroom. These

can be a reminder of how often we run into conditionals in our lives! To start the

wrap up discussion, ask the class if anyone is still confused about how conditionals

work. Review how they are related to while loops and why a programmer would

use a conditional statement to tell the computer how many times to run the loop.

See if anyone has thought of a new conditional statement while working on the

activity, and have them share it with the class.

Tips for What Might Go Wrong:
Students might have trouble coming up with ideas for topics to do on their mobile.

If that’s the case, have the class discuss some ideas together, and tell them it’s okay

to pick the same topic, as long as they make their conditional statements different.

There are lots of decisions to make about getting dressed, so lots of people could

make theirs about getting dressed, and then each make decisions about different

kinds of clothing. If you do decide to let students decorate their mobiles after,

	

48	

make sure that they completely finish writing their conditional statements first

before they decorate so that they don’t lose focus on the point of the lesson.

Adaptations:
This activity can be adapted both for students who are picking up the material

quickly, and for those who are struggling. For students who are struggling, you can

help them come up with the IF part of the statement, and then let them figure out

the THEN and IF NOT parts. If a student is picking up the idea very quickly, see if

they can figure out how to do a nested IF statement. For example: IF it’s raining,

(IF your hands are free, THEN grab an umbrella, IF NOT put on a rain coat) IF

NOT no rain equipment today!

State Standards:
Science	and	Math	

• SEPS.1	Posing	questions	(for	science)	and	defining	problems	(for	

engineering)	

• SEPS.5	Using	mathematics	and	computational	thinking	

• SEPS.6	Constructing	explanations	(for	science)	and	designing	solutions	(for	

engineering)	

• SEPS.8	Obtaining,	evaluating,	and	communicating	information	

Physical	Education	

• Listens	respectfully	to	corrective	feedback	from	others	(such	as	peers,	

adults).	(4.4.2.A)	

	

49	

English/Language	Arts	

• 4.RF.1	Apply	foundational	reading	skills	to	demonstrate	reading	fluency	and	

comprehension.	

• 4.RV.1	Build	and	use	accurately	general	academic	and	content-specific	

words	and	phrases.		

• 4.RV.2.4	Apply	knowledge	of	word	structure	elements	(e.g.,	suffixes,	

prefixes,	common	Greek	and	Latin	affixes	and	roots),	known	words,	and	

word	patterns	to	determine	meaning.		

• 4.W.6.2c	Spelling	–	Using	spelling	patterns	and	generalizations	(e.g.,	word	

families,	position-based	spellings,	syllable	patterns,	ending	rules,	

meaningful	word	parts,	homophones/homographs)	in	writing	single	and	

multisyllable	words.		

	

50	

	

51	

Lesson 7- Types

Pre-class Preparations:
Depending on the in class activities you decide to do with the class, you will need a

wide range of materials, and possibly a lot of prep ahead of time. The “Hands-on

Type Learning” will require a lot of material gathering. More ideas are listed

below in the description for each station, but some good materials to start with are

dice, string and letter beads, cards, dominos, light switches, and a number line.

If you decide to do the sorting activity, you will need 10 small, round laundry

baskets. Labels for 4 of the laundry baskets can be found in the Appendix. The rest

will just be for the teams to start with. You will need 150 plastic ball-pit type balls,

made up of 6 different colors. Each team should have their own color balls, but if

getting 6 different colors is too difficult, you can draw dots on one side of each of

the balls to indicate which team they belong to. Then write a letter, number, word,

or “true”/ “false” on each of the balls for each group, spreading between the 4

options as easily as possible. If you want to make the game into a competition, you

can get prizes for the winners as well, but that is not the best option for every class,

so prizes are certainly optional.

	

52	

Beginning Discussion:
Explain to the class that when computer scientists write programs, they need

different types of answers from their code, depending on the things they want the

computer program to do. Compare these different types of answers from the code

to different types of answers to questions that you could ask them. Ask the

following questions and have each student write down their answers.

1) What	letter	does	your	name	start	with?	

2) What	is	your	favorite	food?	

3) How	old	are	you?	

4) Do	you	like	chocolate	cake?	Then	rephrase	this	question	and	tell	them	

to	write	true	or	false	based	on	the	phrase	“I	like	chocolate	cake.”	

Now talk about each “type” and explain how the answer to the question you asked

is similar to the answer that computer programmers would want. For the first

question you asked, the students should have only written down one letter. This is

like a “char”, or character type in computer science. For the second question, they

answered a word or phrase. That is a “string” type in computer science. The third

question should have been answered with a number, which corresponds to a “int”

or integer type. The last question was a yes or no, and then a true or false. These

are both “boolean” types, which are types that can be one of two answers. As you

	

53	

discuss each of the types, write them on the board. When you finish talking about

each one. Point to them in random order and ask students to raise their hand and

tell the class their answer that is the correct type.

In-class Activities:

Hands-on Type Learning (20-30 minutes)

This activity is a rotation where you will break the students into four groups and

have them rotate around the stations that each have one or more hands on activities

to help students understand the different types. You can have each rotation take

anywhere from 5 to 10 minutes, depending on how involved your students get and

how quickly they seem to be picking up the concepts.

Station 1- Char

Some good materials to have here are scrabble tiles, or pieces from Bananagrams.

You can have beads with letters on them here, but they will also be at the “string”

station. Another good type of letters to have at this station is plastic refrigerator

magnet letters, or foam sticker letters.

Station 2- Int

This station is anything numbers. All different kinds of dice are good. Another idea

would be to have a number line, and something that was circular and the right size

to encompass one number. Students could use that to highlight one number at a

	

54	

time on the number line. A sequential counter is another way to physically see

integers and by clicking the number up each time they can simulate what might

happen to an int in a computer program.

Station 3- String

At this station, beads with letters and some string are needed. Then students can

put the beads onto the string to form a string, thinking of as many different words

as they can. Have them tie off both ends and make a big list of all of the strings

their group is able to come up with. Here you can also incorporate things like

practicing their spelling words or writing out sight words.

Station 4- Boolean

This station should only have things with yes/no, on/off, or true/false options. One

thing to have is some dominos with one side blank and the other containing one

dot. Switches that can be flipped back and forth are also good. Playing cards can be

face up where you can see them or face down where you cannot. Coins are a good

representation for two options with heads or tails. Any other representations of a

two-way choice can go here as well.

Sorting Game (25-40 minutes)

This game is much more high energy, and probably also more fun for the kids.

Unfortunately, this is also no a great game to play in the classroom because of the

	

55	

space required. This would be a great game to play outside, in the gym, or in any

other wide, open space that you have access to. Put four of the round, plastic

laundry baskets in the middle of the space with labels for each of the four types.

Then place the remaining six baskets equally spaced around the outside in a circle.

Fill each of the outer baskets with the 25 balls for that team to use to sort. Then

divide your students into teams and have each group gather by a basket. On “GO”,

one student at a time will grab a ball from the team basket, read it, run to the

baskets in the center, and decide which basket it belongs in based on what type it

is. Then they will run back and tag the next person on their team, who will then

pick up another ball and repeat the process. Have each team sit down when they

have sorted all of their balls, but once everyone is done, gather everyone in the

middle and go through each basket to see if there are any balls in the wrong basket.

The goal here is not just to sort the fastest, but also not to put any balls in the

wrong basket.

Wrap up:
Because this lesson was all about learning new vocabulary and concepts, wrap it

up with a check-in to see if anyone is still confused. Ask the class is there is

anything confusing or hard to remember about the different types. Ask what parts

of the “Hands-on Learning” helped them remember what each type is. For a final

	

56	

wrap up, have each student write down 2 things that are examples of each type and

share them with a neighbor or their table.

Tips for What Might Go Wrong:
Obviously, when playing any game that involves running or moving around a lot, it

is important to be careful of the environment you set up with. If playing outside, be

sure there are no concrete surfaces, holes, rocks, or dips that students could fall or

trip on. Proper footwear is also key in preventing injuries in a game with running.

In games that create competition, it’s always best to be careful and watch for

bullying or taunting within and between teams. If your class does not handle

competition well, you can turn the competition into cooperation but timing each

team independently of the others and encouraging the teams to try to beat their first

time in a second speed round.

Adaptations:
Specifically, for the Sorting Game, if you have students who are struggling

understanding the difference between the types, you can have students go in

partners, each grabbing a ball and linking arms to run to the middle. Then have

them talk about which type each ball is together, and remind them that they have to

agree before putting it in the basket.

	

57	

There really isn’t a need to adapt the Hands-on Learning because each student can

explore at the stations at their own pace. If you notice students struggling to

understand you could lengthen the amount of time at each station, or again, assign

them a buddy to talk through the elements at each station.

State Standards:
Science	and	Math	

• SEPS.5	Using	mathematics	and	computational	thinking	

Physical	Education	

• Listens	respectfully	to	corrective	feedback	from	others	(such	as	peers,	

adults).	(4.4.2.A)	

• Praises	the	movement	effort	of	others	both	more	and	less	skilled.	(4.4.3.A)		

• Accepts	players	of	all	skill	levels	into	the	physical	activity.	(4.4.3.B)	

• Exhibits	etiquette	and	adherence	to	rules	in	a	variety	of	physical	activities.	

(4.4.4.A)	

English/Language	Arts	

• 4.RV.1	Build	and	use	accurately	general	academic	and	content-specific	

words	and	phrases.		

• 4.RV.2.4	Apply	knowledge	of	word	structure	elements	(e.g.,	suffixes,	

prefixes,	common	Greek	and	Latin	affixes	and	roots),	known	words,	and	

word	patterns	to	determine	meaning.		

	

	

	

58	

	

	

59	

Glossary

Algorithm- A set of steps to complete a task or solve a problem

Binary- A way of representing information using only two options (often using the

numbers 1 and 0)

Block Coding- Coding that is done by dragging and dropping chunks of pre-

written pseudo-code to create a program; a common way to teach beginners

how to code

Boolean- A type in programming that indicates an answer that is one of two values

(usually true of false)

Bug- An error in a program that makes it run incorrectly or not at all

Char- (Character) A type in programming that indicates an answer that is a single

letter

Code- The instructions that programmers create that then tells the computer what

to do

Computer- A machine that can solve problems and store information; a machine

that can input data, process it, and output new data

	

60	

Computer Science- The study of computers and computer systems; using the

power of computers to solve problems

Conditional Statements- Code that only runs in a certain situation

Data- Information. Usually numbers, letters, symbols, or pixels that are the input

or output of a computer program

Debugging- The process of going through code or an algorithm and checking for

mistakes, or bugs

For Loop- A loop that runs for a certain, explicit number of times

Int- (Integer) A type in programming that indicates an answer that is a number

Loop- An action or section of code that is executed over and over again multiple

times

Program- An algorithm that has been coded into something that can be ran by a

computer

Programming Language- A language that can be used to give instructions to a

computer that it is able to process

Pseudo-code- Code that is written out in English instead of a programming

language; good for beginners or thinking through the process of how to write

difficult code

String- A type in programming that indicates an answer that is one or more words

	

61	

Variable- A placeholder (usually a letter) for a piece of information that can

change

While Loop- A loop that runs the entire time a specific condition is true

	

62	

	

63	

Additional Resources

CS Unplugged

CS Unplugged is an online resource for lessons and activities similar to the ones I

have created for this project. The organization was founded by professors at

universities in New Zealand and Australia, and has expanded to include members

from the United States, Canada, Brazil, Russia, Israel, many countries in Europe,

and several other countries all over the world. Their focus is to teach

computational thinking, as well as provide a way for computer science topics to be

taught without the use of computers and by teachers without a background in the

field.

CS Unplugged has lessons for students from ages 5 to 14, including topics such as

binary numbers, search algorithms, and sorting networks. Each lesson or activity

is connected to other areas of the required curriculum, and there are videos to help

teachers understand and prepare for each lesson ahead of time.

	

64	

Code.org

Code.org is a great resource both for coding practice with computers and learning

about computer science without. They are a nonprofit group that

focuses on increasing participation in computer science from groups such as

women and minorities that are traditionally underrepresented in the field. They

provide curriculum for kids K-12, and host extracurricular activities such as Hour

of Code, that engages students outside the classroom.

They have tons of lessons on digital citizenship, loops, algorithms, sequencing,

and many other computer science topics. Each lesson has a detailed lesson plan,

and many others have lesson videos, teacher prep videos, and answer keys. There

is also a curriculum guide that can be downloaded that allows teachers to see the

lessons in each course laid out, as well as core concepts, attitudinal goals, and

teaching tips that can help teachers who don’t have previous experience with

computer science.

	

65	

Computer Practice

Hour of Code

Hour of Code is a website that branches off of Code.org, and focuses on letting

students learn about programming and computer science outside of school.

However, it would also be a great resource for a day in the computer lab where

each student has access to their own computer.

After going to hourofcode.com, go to the “Activities” tab on the top right, and you

will be taken to a page with hundreds of online coding games. The activities range

from pre-reader to grades 9+, and can be sorted by age, activity type, length, and

available technology (computers, iPhone/iPad, Android, and poor internet).

Games have a variety of themes and characters, so everyone can find something

they like. These include themes like animals, musical instruments, and cars, and

characters from Star Wars, Barbie, superheroes, and Disney movies.

	

66	

Scratch

Created by the Lifelong Kindergarten Group at the MIT Media Lab, Scratch is a

completely free program that uses drag and drop block code to help kids learn

how to program. The MIT Media Lab is a branch of MIT’s School of Architecture

that has taken on the challenge to conduct research that does not cling to

traditional academic topics, and instead incorporates technology and art into their

projects. Scratch is one of their most successful projects; currently, it is used in

150 countries, and can be used in 40 different languages.

The platform allows students to both engage in free play and create their own

stories, as well as follow along on specific tutorials that give step-by-step

directions on how to code games and stories. While Scratch does not focus as

heavily on learning the concepts that some of the other sites teach, it is a great

resource for starting to learn how to code after a basic understanding of the other

principles are understood.

	

67	

Tynker

Tynker was created by a group of parents, developers, educators, and gamers, who

saw the need for a way to introduce kids to coding in a more engaging and

exciting way. They have offices in California and Chicago, and have recruited

several investors from Silicon Valley. While this site is not as accessible because

it only allows you a short free trial before you have to start paying for the content,

it still has some pretty cool content.

As a student or teacher, you can sign up for a free account and get access to

several different coding games and puzzles, but after a certain number of free

games you have to pay to unlock the rest. These games are very similar to the

games provided by Hour of Code in that they use popular character and themes to

get kids excited about coding. Tynker also uses Minecraft’s popularity to get kids

trying to learn how to code. They offer skin designing, learning how to make

mods, and creating texture packs.

	

68	

	

69	

The Appendix

Lesson 1

Lesson 1

Lesson 1

Lesson 1

Name:

Lesson 2

Name:

Lesson 2

Name:

Lesson 2

Name:

Lesson 3

Name:

Lesson 3

Name:

Lesson 3

Optional Obstacle Course Map

cone

jump

cone

Raised plank

jump

Raised plank

cone

Raised plank

jump

Raised plank

tunnel

tunnel

tunnel

Lesson 3

Lesson 4

Jumping

Jacks

Pushups

Situps

Arm

Circles

Dance
Party

High
Knees

Lesson 4

Jog in
Place

Toe

Touches

High
Fives

Spelling
Word

Supermans

Spelling
Word

Int
(Integer)

Char
(Character)

String

Boolean

	Computer Science without Computers: A Guide to Teaching Concepts of Computer Science without Access to Computers or Other Technological Devices
	Recommended Citation

	tmp.1591791255.pdf.0URE1

