11-2014

Kinematics and Economy of Novel Barefoot Running

Aaron Zell
DePauw University

Patrick Babington
DePauw University, patbabington@depauw.edu

Follow this and additional works at: http://scholarship.depauw.edu/srfposters

Part of the Kinesiology Commons

Recommended Citation
Kinematics and Economy of Novel Barefoot Running
Aaron Zell, Dr. Patrick Babington
Department of Kinesiology, DePauw University, Greencastle, IN 46135

Abstract

The purpose of the study was to compare key physiological, anthropometric, and kinematic attributes between barefoot and shod runners while also comparing these variables to the running economy of their respective conditions. We hypothesize that when running in the acute barefoot condition participants will exhibit significant biomechanical, physiological, and kinematic differences compared to the shod condition that may be correlated with a superior or inferior running economy. Make (4) and female (5) test subjects (19.2±0.83 years, 171.06±6.89 cm, 71.09±14.52 kg) participated in two separate testing sessions. The first session involved collecting the weight, height, sitting height, ankle and hip widths, hamstring flexibility, and body fat percentage preceding a maximal oxygen consumption test. The second session required subjects to run at a variety of submaximal velocities while they were recorded with high speed video. Kinematic variables were measured using Dartfish Video Analysis Software. Results showed that VO2 was greater when shod than barefoot at 2.68 m/s, but shod running required less oxygen at 3.58 m/s. There was no difference at 3.13 m/s. Body composition was the only physiological variable that correlated with economy. Knee angle decreased and stride frequency increased when switching from shod to barefoot running. These findings suggest that as habitually shod runners begin barefoot running they adapt to increased ground reaction forces by incorporating greater knee flexion and a faster stride frequency. These changes may cause a decrease in economy at slower speeds and an improvement in economy at greater velocities.

Methods

Subject characteristics are reported in Table 1. Subjects reported to the lab on two separate occasions.

Session 1:
• Height, weight, leg length, biliac breadth, bimalleolar breadth and flexibility were measured.
• Body composition was measured by air displacement plethysmography (Bod Pod).
• Maximum oxygen consumption (VO2max) was measured shod using a continuous ramp protocol where treadmill grade was increased 2% every two minute stage.

Session 2:
• Weight was recorded shod.
• Markers were placed on the right shoulder, hip, knee, and ankle.
• Subjects ran shod at 2.68, 3.13, and 3.58 m/s at 0% grade with each stage lasting three minutes.
• Subjects then removed their shoes and were weighed again.
• Subjects ran barefoot at 2.68, 3.13, and 3.58 m/s at 0% grade with each stage lasting three minutes.
• High speed (240 fps) video was recorded for the last 15 seconds of each three minute stage.

Video Analysis
• Video was uploaded to Dartfish Video Analysis Software for kinematic analysis.
• Ankle, knee, and hip angles were tracked throughout run.
• Stride frequency was calculated from video data.

Results

Table 1 – Subject Characteristics (mean ± std)

<table>
<thead>
<tr>
<th></th>
<th>Height (cm)</th>
<th>Mass (kg)</th>
<th>Body Fat %</th>
<th>VO2 Max (ml/kg/min)</th>
<th>Ankle Width (cm)</th>
<th>Flexibility (cm)</th>
<th>Hip Width (cm)</th>
<th>Leg Length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>170.55 ± 6.51</td>
<td>66.85 ± 10.88</td>
<td>17.53 ± 6.81</td>
<td>43.3 ± 4.93</td>
<td>6.67 ± 0.52</td>
<td>32.83 ± 7.67</td>
<td>28.11 ± 0.97</td>
<td>86.9 ± 21.37</td>
</tr>
</tbody>
</table>

Conclusions

In the barefoot condition, stride frequency was increased and knee angle was decreased compared to the shod condition. Novice barefoot runners change gait kinematics in order to decrease ground reaction forces with little effect on economy. The only variable that had a significant correlation with running economy was body composition.