Files

Download

Download Full Text (1.0 MB)

Document Type

Poster

Publication Date

Fall 11-2014

Abstract

One challenge in using artificial neural networks is how to determine appropriate parameters for network structure and learning. Often parameters such as learning rate or number of hidden units are set arbitrarily or with a general "intuition" as to what would be most effective. The goal of this project is to use a genetic algorithm to tune a population of neural networks to determine the best structure and parameters. This paper considers a genetic algorithm to tune the number of hidden units, learning rate, momentum, and number of examples viewed per weight update. Experiments and results are discussed for two domains with distinct properties, demonstrating the importance of careful tuning of network parameters and structure for best performance.

A Parallel Genetic Algorithm For Tuning Neural Networks

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.